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ABSTRACT: Propofol is commonly administered, as a single bolus dose, for the indu-
ction of general anesthesia. The purpose of this study was to mathematically assess the
ability to model propofol induction-dose serum levels with a recursive finite diffe-
rence equation (RFDE). Using data obtained from a prior published study, propofol
induction pharmacokinetics were accuratelymodeled, on a subject-specific basis, with a
third-order homogeneous finite difference equation with constant coefficients:
P(kþ 3)¼AP(kþ 2)þBP(kþ 1)þCP(k). Furthermore, each RFDE model is derived directly
from the coefficients of a traditional three-compartment pharmacokinectic exponential
equation. Based on this study, third-order RFDEmodels can have identical accuracy as
three-compartment exponential models. In this particular application, it should be
noted that each RFDEmodel required only three coefficients whereas each exponential
model required six. Also, there was overall less patient-to-patient variability of the
coefficients of the RFDE models. In general, it appears that RFDE models uniquely
allow for predicting subsequent drug levels from preexisting ones. However, RFDE
models require initial conditionswhereas exponentialmodels do not. Additional studies
and applications of exponentially-derived RFDE pharmacokinetic models may be
warranted. � 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci

95:810–820, 2006
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INTRODUCTION

Finite difference equations have been used in
modeling such diverse topics as economics and

human behavior.1–3 Because of their recursive
properties, theymay be useful in pharmacokinetic
modeling as well. Therefore, ongoing metabolism,
elimination, and redistribution can be taken into
effect when modeling sequential serum levels of a
single bolus.

Propofol is an ultra-short acting sedative-
hypnoticwhich is commonly used for the induction
of general anesthesia. Propofol allows for rapid
awakening from anesthesia and has few adverse
effects. Small doses of propofol are also used for
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brief episodes of sedation. Continuous infusions
are frequently employed for longer periods of sed-
ation. Propofol infusions are also employed as
adjuncts for general anesthesia and in ‘‘total intra-
venous anesthesia.’’4

The purpose of this study was to assess the
utility of recursive finite difference equations
(RFDEs) as a tool for modeling serum propofol
levels following a single induction dose. In addi-
tion, this modeling scheme is derived directly
from a traditional three-compartment exponential
equation.

Figure 1 illustrates howanRFDEmaybe useful
in pharmacokinectic modeling. After the initial
bolus of propofol is administered through an intra-
venous catheter, the drug is then ‘‘pumped’’ throu-
gh the heart into the arterial tree. Following
metabolism, redistribution, and elimination, from
the arterial circulation, these processes are then
repeated after the remaining propofol reenters the
venous circulation.

Thus, following the administration of a propofol
bolus, serum levels are noted to be monotonically
decreasing. Average serum levels, for the 16 sub-
jects examined in this study, are illustrated in
Figure 2.5

A BRIEF OVERVIEW OF RFDEs IN
PHARMACOKINETIC MODELING
OF A BOLUS

The familiar concepts, of zero and first order
pharmacokinetics, can be represented with
RFDEs. As an example of modeling first order
pharmacokinetics of a bolus, a constant fraction,
C1, of a serum concentration, P(k), may be meta-

bolized, eliminated, and/or redistributed every
kth unit of time. With 0<C1< 1, this would be
represented as:

Pðkþ1Þ ¼ C1PðkÞ k ¼ 1; 2; 3 . . . ð1Þ

Whereas, with zero order pharmacokinetics, a
constant amount of a serum level, C2, may be
removed every kth unit of time. With 0<C2<P(k),
this could be modeled as:

Pðkþ1Þ ¼ PðkÞ � C2 k ¼ 1; 2; 3 . . . ð2Þ

UsingRFDEs, these two pharmacokinetic prop-
erties can also be modeled simultaneously:

Pðkþ1Þ ¼ C1PðkÞ � C2 k ¼ 1; 2; 3 . . . ð3Þ

Assuming that P(k) represents a monotonically
decreasing serum level, then a solution to Equa-
tion (3) can be shown:2

Pðkþ1Þ ¼ Ck
1ðP1 � P�Þ þ P� k ¼ 1; 2; 3 . . . ð4Þ

It should also be noted that the recursive relation-
ship, in Equation (4), can also be expressed as:

PðkÞ ¼ C
ðk�1Þ
1 ðP1 � P�Þ þ P� k ¼ 1; 2; 3 . . .

ð4:1Þ

Where P1 represents the initial serum level of
medication and P*¼C2/(1�C1). Assuming only
first order pharmacokinetics, then C2¼ 0 and
consequently P*¼ 0. Under this circumstance,
P(kþ1) is then:

Pðkþ1Þ ¼ Ck
1P1 k ¼ 1; 2; 3 . . . ð5Þ

Figure 1. Conceptual diagram illustrating the recur-
sive nature of pharmacokinetics. Arterial propofol blood
levels aremetabolized, excreted, and redistributed.After
passing through the heart, the venous drug concentra-
tions become the subsequent arterial drug concentra-
tions.Ultimately, the remaining propofol is again passed
to the venous system. Thus, RFDEs may be useful for
modeling this recursive pharmacologic phenomena.

Figure 2. The above graph documents the mean and
standard deviation of propofol serum levels, over time,
for the 16 subjects. Note that these measured levels
monotonically decreased.
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This can also be similarly expressed as:

PðkÞ ¼ C
ðk�1Þ
1 P1 k ¼ 1; 2; 3 . . . ð5:1Þ

It should be noted that this would represent a
single-compartmentmodel. Amore complex situa-
tion, analogous to a three-compartmentmodel, can
be represented as:

Pðkþ3Þ ¼ APðkþ2Þ þ BPðkþ1Þ þ CPðkÞ k ¼ 1; 2; 3 . . .

ð6Þ

The general solution to the above RFDE, assum-
ing the stated characteristics as before, (see
Appendix A) is:1–3

PðkÞ ¼ ��k þ ��k þ e�k ð7Þ

Similarly, using a traditional three-compart-
ment exponential model, serum levels of a phar-
maceutical are typically represented as:

QðkÞ ¼ ae�bk þ ce�dk þ fe�gk ð8Þ

For third-order RFDEs, as in Equation (6), it is
necessary to determine their initial conditions: P1,
P2, and P3 from either their general solution or
their parent exponential equation. With these,
each RFDE can then determine its respective
subsequent values.

It is frequently necessary to calculate area
under the concentration versus time curve, or
AUC,when determining pharmacologic clearance.
This can be done by evaluating the integral:

AUC ¼
Zn

1

PðkÞ dk ð8:1Þ

Where n represents the total number of serum
levels modeled. In determining Equation (8.1),
numerical approximation techniques can be read-
ily used as well as common integration methods.

Pharmacologic half-life, for first-order RFDEs
such as Equation (4.1), can be found by solving the
following equation for k:

P1

2
¼ C

ðk�1Þ
1 ðP1 � P�Þ þ P� ð8:2Þ

For higher-ordered RFDEs, half-life can be deter-
mined using numerical or graphical techniques.

As will be shown later, values computed from
either the RFDE model or exponential model, will
be identical on a subject-specific basis. This applies
not only to the modeled serum values, P(k) and
P(kþ 3), but also to AUCand half-life values aswell.

This occurs since the coefficients of RFDE models
are derived directly from those of their respective
parent exponential model.

NOMENCLATURE

P(kþ 3) refers to the values generated from the
RFDE:

Pðkþ3Þ ¼ APðkþ2Þ þ BPðkþ1Þ þ CPðkÞ k ¼ 1; 2; 3 . . .

ð9Þ

Whereas P(k) is the general solution to
Equation (9):

PðkÞ ¼ ��k þ ��k þ "�k ð10Þ

It should be noted that the solution to Equation
(9), P(kþ3), and the solution to Equation (10), P(k),
are numerically equivalent. The term: k¼ 1, 2,
3 . . . denotes that values obtained from a RFDE
must be calculated sequentially. This sequential
process is unnecessary when using the general
solution.

Q(k) refers to solutions obtained for the three-
compartment exponential model:

QðkÞ ¼ ae�bk þ ce�dk þ fe�gk ð11Þ

Deriving Each RFDE Model From its
Respective Parent Exponential Model

A traditional three-compartment exponential
model is based on the following equation:

QðkÞ ¼ ae�bk þ ce�dk þ fe�gk ð12Þ

Equating Equation (12) to the general solution of
the finite difference model:

��k þ ��k þ "�k ¼ ae�bk þ ce�dk þ fe�gk ð13Þ

The above equality is valid under the following
conditions:

� ¼ a; � ¼ c; and e ¼ f ð14Þ

and

� ¼ e�b; � ¼ e�d; � ¼ e�g ð15Þ

Substituting the above relations, into the RFDE
model from Appendix A, yields:

Pðkþ3Þ ¼ APðkþ2Þ þ BPðkþ1Þ þ CPðkÞ k ¼ 1; 2; 3 . . .

ð16Þ
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Where

A ¼ ð� þ � þ �Þ ¼ ðe�b þ e�g þ e�dÞ ð17Þ

B ¼ �ð�� þ �� þ ��Þ
¼ �ðe�b � e�g þ e�b � e�d þ e�d � e�gÞ
¼ �ðe�ðbþgÞ þ e�ðbþdÞ þ e�ðdþgÞÞ

ð18Þ

and

C ¼ ð���Þ ¼ ðe�b � e�d � e�gÞ ¼ e�ðbþdþgÞ ð19Þ

Thus, A, B, C, the coefficients of each RFDE
model, are obtained directly from those of their
respective parent exponential models. Therefore,
each RFDE model will have the same accuracy as
the ‘‘curve-fitted’’ parent exponential model from
which it was derived.

In this particular application, each RFDE was
based on three coefficients. Whereas each expo-
nential model, as well as the general solution
of each RFDE, required six. Thus, the RFDE
model is a more ‘‘compact’’ representation.

However, it is necessary to determine the initial
conditions: P1, P2, and P3 for each RFDE. These
can be obtained from either their general solution
or their respective parent exponentialmodel.With
these initial values, each RFDE can then deter-
mine subsequent subject-specific propofol serum
levels.

A numerical example of this process is illu-
strated in Appendix B.

METHODS: DATA ACQUISITION
AND ANALYSIS

The propofol serum levels, for this analysis, were
obtained from prior research and supplied
directly to the authors from Astra-Zeneca phar-
maceuticals. In the initial IRB-approved study,
volunteers, age 19 through 65, who had received
informed consent, had been given an intravenous
propofol bolus of 2 mg/kg. Venous serum levels of
propofol were then measured sequentially at: 1, 2,
4, 8, 16, 30, and 60 min.5 These data are shown in
Table 1.

These same subjects had later received contin-
uous IV propofol infusions. The original study
obtained serum levels, during this infusion, which
were not analyzed in the present study.

In addition, the original study examined older
subjects age >65 years as well. These subjects
received a smaller intravenous induction dose of
1 mg/kg. These results were also not assessed in
the present study.

Furthermore, the purpose of the original study
was to compare propofol pharmacokinetics with,
versus without, disodium edetate (EDTA). The
addition of EDTA has been shown to significantly

Table 1. Measured Serum Propofol Levels, for Each of the 16 Subjects, at the Specified Times

Subject 101 105 202 207 102 108 201 205

Propofol
level min 1

18.0000 18.8000 34.5000 26.4000 9.8000 3.8900 8.8600 8.5900

2 3.6200 4.5100 6.8400 5.1000 2.9500 2.1200 3.5500 2.4000
4 1.3300 1.7500 2.0400 2.0900 1.2500 1.7700 1.6500 1.0200
8 0.6760 0.8620 0.8620 0.9720 0.5830 1.1400 0.9490 0.4140
16 0.3380 0.4430 0.4480 0.4230 0.5920 0.5770 0.4830 0.2460
30 0.2040 0.2710 0.2700 0.2770 0.1730 0.3080 0.2850 0.1370
60 0.1100 0.1120 0.2040 0.1910 0.1190 0.2500 0.1540 0.1160

Subject 103 106 204 208 104 107 203 206

Propofol
level min 1

14.4000 5.3600 18.1000 8.4400 16.8000 9.0700 19.2000 9.6200

2 3.1500 2.6100 4.8800 2.7000 4.9200 3.3900 4.2600 3.2600
4 1.7900 1.3200 1.9800 1.5200 1.6300 1.5200 1.7500 1.8700
8 0.8500 0.7590 0.7140 0.8490 0.6970 0.9090 1.0600 0.9850
16 0.5250 0.3860 0.1800 0.4140 0.3690 0.4150 0.3980 0.4690
30 0.3430 0.2560 0.1300 0.2130 0.2730 0.3800 0.2050 0.2350
60 0.2440 0.2010 0.0804 0.1410 0.1510 0.1830 0.1370 0.1310
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reduce bacterial growth within the commercial
formulation of propofol. It should be noted that
propofol is prepared asanemulsionwhich requires
this, or a similar, antimicrobial additive.4

Our data are based on an analysis of only those
subjects, age 19–65 years, who had received a
single induction dose of 2 mg/kg intravenous
propofol with EDTA as an additive. Currently,
this formulation is in clinical use in the United
States.

This retrospective analysis, of existing data,
was deemed exempt from requiring IRB approval
at both authors’ institutions. Data from a total of
the 16 original subjects met inclusion criteria for
this present analysis.

Curve fitting was performed using MATHCAD
(Mathsoft Cambridge, MA). For each parent
exponential model, this was based upon (see
Appendix B):

QðkÞ ¼ ae�bk þ ce�dk þ fe�gk ð20Þ

Specifically, a minimum error function, predi-
cated upon the Levenberg–Marquardt algorithm,
was used.6,7 Iterations were performed until the
mean sum of the squared error (MSSE) was on the
order of 10�3 or less:

MSSE ¼ 1

n

Xn
j¼1

ðsj � fae�bj þ ce�dj þ fe�gjgÞ2 ð21Þ

Where sj represents each measured propofol
serum level and n¼ 7 for each subject’s seven
measurements. This process was repeated for
each subject-specific parent exponential model.

Following the determination of the exponential
coefficients, those coefficients, for each RFDE
model, were then calculated using the method
described in Equation (12) through Equation (19).
(See: Deriving each RFDE model from its respec-
tive parent exponential model.) The flowchart in
Figure 3 summarizes these processes.

Note that curve fitting could also have been
done with respect to the coefficients of the gen-
eral solution of the finite difference equation, P(k).
This technique would have ultimately yielded
identical results for the coefficients of the RFDEs.

RESULTS

The coefficients, for each of the 16 subject-specific
exponential and RFDE models, are shown in
Table 2. These coefficients are also displayed
graphically in Figures 4A and 4B. On initial

inspection, each RFDE model required only three
coefficients whereas each exponential model
required six. Thus, the RFDE models, in general,
may be thought of as being ‘‘more straightfor-
ward’’ than their respective parent exponential

Figure 3. This flowchart depicts how the RFDE
models were derived from their respective parent
exponential equations.
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models. However, the RFDE models required the
specification of their initial conditions. These
were readily obtained from either their parent
exponential model or their general solution.

The coefficients, of each RFDE model, were
derived directly from each of their respective
parent exponential models. Thus, the MSSE, for

each RFDE model, is identical to that of the
exponential model from which it was derived.

Furthermore, on graphical inspection, of the
coefficients of both models, there is less overall
patient-to-patient variation of the three coeffi-
cients: A, B, and C, comprising the RFDE
models.

Table 2. TheMean Sum of the Squared Error (MSSE) is Identical for Each Subject-Specific Exponential Model and
its Corresponding RFDE

Subject 101 105 202 207 102 108 201 205

Coefficient a 146.157 130.332 259.421 266.498 108.114 152.671 28.434 65.868
b 2.24 2.139 2.155 2.479 3.016 4.613 1.491 2.391
c 0.424 0.663 0.508 0.43 0.837 0.241 0.506 0.285
d 0.023 0.03 0.017 0.014 0.038 0.0001177 0.02 0.017
f 2.625 3.802 5.411 4.732 7.139 2.409 2.374 3.304
g 0.261 0.302 0.318 0.26 0.658 0.121 0.19 0.371
Coefficient A 1.854 1.828 1.827 1.838 1.53 1.896 2.032 1.765
B �0.939 �0.919 �0.914 �0.905 �0.571 �0.905 �1.217 �0.832
C 0.08 0.085 0.083 0.064 0.024 0.00879 0.183 0.062
Mean SSE 1.74E-05 3.21E-07 3.55E-04 1.71E-05 4.85E-03 4.48E-04 9.99E-07 2.51E-04

Subject 103 106 204 208 104 107 203 206

Coefficient a 498.72 12.388 125.081 57.026 77.943 32.487 138.296 70.211
b 3.856 1.278 2.219 2.251 1.776 1.578 2.12 2.4
c 0.613 0.299 0.163 0.357 0.478 0.493 0.176 0.537
d 0.016 0.006607 0.011 0.016 0.019 0.015 0.004219 0.025
f 4.507 1.919 5.818 2.526 4.404 2.309 2.811 3.423
g 0.329 0.175 0.292 0.192 0.342 0.208 0.148 0.228
Coefficient A 1.725 2.111 1.845 1.915 1.861 2.004 1.978 1.862
B �0.744 �1.345 �0.927 �1.003 �0.983 �1.171 �1.082 �0.937
C 0.015 0.232 0.08 0.086 0.118 0.165 0.103 0.07
Mean SSE 3.35E-04 9.33E-08 4.09E-05 1.14E-04 2.10E-06 1.19E-03 2.95E-04 1.54E-04

A,B, andC represent the coefficients for theRFDEmodels.Whereasa,b, c,d, f, andgare the coefficients for the exponentialmodels.

Figure 4. (A) represents coefficient a of the exponential models. Whereas (B) re-
presents coefficientsA,B, andC of the RFDEmodels as well as coefficients b, c, d, f, and g

of the exponential models. Overall, there is less patient-to-patient variability ofA,B, and
C of the RFDE models.
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This general decrease in patient-to-patient
variability, of the coefficients of the RFDEmodels,
is explained by use of the chain rule (see Appendix
C):8

dA ¼ @A

@b
dbþ @A

@d
ddþ @A

@g
dg ð22Þ

dB ¼ @B

@b
dbþ @B

@d
ddþ @B

@g
dg ð23Þ

dC ¼ @C

@b
dbþ @C

@d
ddþ @C

@g
dg ð24Þ

It should be noted that A, B, and C are derived
from only b, d, and g of the exponential models.

The ‘‘maximum patient-to-patient change’’ of
each coefficient of the RFDEs, can be summarized
with the triangle inequality:9

dAj j < f dbj j þ ddj j þ dgj jg ð25Þ

dBj j < 2f dbj j þ ddj j þ dgj jg ð26Þ

dCj j < f dbj j þ ddj j þ dgj jg ð27Þ

More importantly, on numerical evaluation, the
patient-to-patient variability of coefficients A, B,
and C was found to be considerably smaller than
what the above inequalities ‘‘allow.’’ This is
demonstrated, in Table 3, by evaluating the
numerical values for the partial derivatives in
Equations (22), (23), and (24).

As an example, using Table 1 subject 101,
Equations (22–24) establish dA, dB, and dC,
respectively for this case:

dA ¼ ð�0:106Þdbþ ð�0:977Þddþ ð�0:77Þdg
ð28Þ

Table 4. AComparison of the RFDE and Exponential
Modeling Schemes in This Application

RFDE
Model

Exponential
Model

Number of coefficients 3 6
Patient-to-patient

coefficient variability
Lesser Greater

Ability to predict
‘‘present’’ levels from ‘‘past’’

Yes No

Mean sum of the square error Identical Identical
Need to specify initial

conditions
Yes No

Table 3. Minimum and Maximum Values of the
Partial Derivatives for Equations (22–24)

@A
@b

@A
@d

@A
@g

Minimum �0.2786 �0.9999 �0.8860
Maximum �9.922� 10�3 �0.9630 �0.5180

@B
@b

@B
@d

@B
@g

Minimum 0.0187 0.546 0.5240
Maximum 0.5106 1.1107 1.0678

@C
@b

¼ @C
@d

¼ @C
@g

Minimum �0.2323
Maximum �8.7902� 10�3

These explain the overall reduction, in patient-to-patient
variability, seen in the coefficients of the RFDEs. This is in
comparison to the coefficients of their respective parent
exponentialmodels. It should benoted that, for negativevalues,
minimum refers to the negative value with the greatest
magnitude. Whereas for positive values, maximum refers to
the greatest positive value.

Table 5. A Numerical Comparison of the Measured Serum Propofol
Concentrations to Those of Their RFDE, General Solution, and Exponential Models

Measured
Serum

RFDE
P(kþ 3)

General
Solution P(k)

Exponential
Q(k)

Propofol
level min 1

18.0000 17.9960 17.9960 17.9960

2 3.6200 3.6190 3.6190 3.6190
4 1.3300 1.3300 1.3300 1.3300
8 0.6760 0.6790 0.6780 0.6780
16 0.3380 0.3340 0.3340 0.3340
30 0.2040 0.2140 0.2140 0.2140
60 0.1100 0.1070 0.1070 0.1070

This is based upon subject 101.
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dB ¼ ð�0:186Þdbþ ð�0:857Þddþ ð�0:835Þdg
ð29Þ

dC ¼ ð�0:08Þ½dbþ ddþ dg� ð30Þ

By using the triangle inequality, absolute values
for dA, dB, and dC can then be assessed:

dAj j � ð0:106Þ dbj j þ ð0:977Þ ddj j þ ð0:77Þ dgj j ð31Þ

dBj j � ð0:186Þ dbj j þ ð0:857Þ ddj j þ ð0:835Þ dgj j
ð32Þ

dCj j � ð0:08Þ½ dbj j þ ddj j þ dgj j� ð33Þ

This exemplifies why coefficients A, B, and C,
from the RFDE models, have overall less patient-
to-patient variation than the coefficients from the
exponential models.

In addition, the changes in the patients’ initial
conditions, of the RFDEmodels, contributes to the
decreased patient-to-patient variability observed
in coefficients A, B, and C.

This study has also shown that RFDEmodeling
also has the unique property that ‘‘present’’
propofol serum levels can be determined from
their ‘‘past’’ levels.

Table 4 summarizes and compares the different
characteristics of the exponential and RFDE
modeling schemes.

DISCUSSION

The recursive nature of finite difference equations
seems to make them well-suited for modeling
pharmacokinetics.1–3 This appears to be particu-
larly appropriate in the unique situation of single
induction-dose propofol serum levels.

It should be noted that the exponential models,
and the general solutions of the finite difference
equations, are both summations of power func-
tions. In addition, both the general solution of the
finite difference equations and the RFDEs, are
derived directly from their respective parent
exponential models.

RFDE modeling has demonstrated that ‘‘pre-
sent’’ serum levels of propofol can be determined
from their ‘‘previous’’ levels in a sequential
manner. Each RFDEmodel is alsomore ‘‘compact’’
in that fewer coefficients are needed. This is in
comparison to those of their general solution and
parent exponential models.

The MSSE has shown that both of these models
are reasonably accurate. Furthermore, since the

Figure 5. A graphical representation of the measured propofol concentrations as well
as theRFDE, general solution, and exponentialmodels.Note that the lines for themodels
overlap. This is from subject 101.
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coefficients, of each RFDE, are derived directly
from their respective parent exponential models,
bothmodeling schemes yield identical accuracy on
a subject-specific basis.

Perhaps the most striking aspect of the RFDE
models is the overall decreased patient-to-patient
variability of their coefficients. This is in compar-
ison to those of the exponential models. An
analysis using the chain rule and triangle inequal-
ity explains and supports this observation.

Furthermore, the decrease in patient-to-patient
variability, of RFDE modeling, may make this
technique desirable in comparing pharmacokinec-
tics across different agents and/or different patient
populations.

Furthermore, slightly different RFDEs, such as
those based on inhomogeneous difference equa-
tions, may be useful for modeling infusion-based
pharmacokinetics. Whereas this present study
used homogeneous RFDEs to model bolus-based
pharmacokinetics. It should be noted that inho-
mogeneous difference equations have the form:1

Pkþn þ AnPkþn�1 þ . . .þ A1Pkþ1 ¼ R ð34Þ

Where R is non-zero. This is in contradistinction
to homogeneous difference equations were R is
zero.

Therefore, RFDE models may be useful in
computer-controlled infusions as well as
simula-tions.

However, RFDE models cannot ‘‘stand alone.’’
They require the specification of their initial
conditions. Whereas both the exponential and
general solution do not. Nonetheless, these values
can be obtained directly from their parent expo-
nential model or general solution.1–3

CONCLUSION

A technique to model induction-dose propofol
pharmacokinetics, with exponentially-derived
RFDEs, has been presented. Additional assess-
ment and comparisons, of RFDE pharmacokinetic
modeling, would be necessary to further establish
this technique. Other ‘‘single dose’’ medications,
including additional anesthesia induction agents,
may possibly be modeled with similar RFDE
techniques.

As stated, the coefficients of the RFDEs have
been derived directly from their respective parent
exponentialmodels. Thus, theMSSE is identical for
both the RFDE and exponential modeling schemes.

The apparent ‘‘benefit’’ to RFDEs is that these
pharmacokinetic models may be more ‘‘compact’’
as compared to traditional exponential models.
Furthermore, there appears to be overall less
patient-to-patient variability, when comparing
the coefficients of the RFDEs, to those of their
parent exponential models.

However, RFDEs require the specification of
their initial conditions. These can be determined
from either their respective parent exponential
model or their general solution. Additional
research and applications of this modeling techni-
que appear warranted. Further comparisons, of
RFDEs to exponential models, may promote more
insight into their potential utility.

APPENDIX A

A case-specific solution, to a third-order homo-
geneous finite difference equation, with constant
coefficients, can be obtained. In this particular
application, it is assumed that propofol serum
levels are monotonically decreasing. Thus, there
is no oscillatory behavior noted as these levels
consistently diminish.

The RFDE is defined with the following form:

Pðkþ3Þ ¼ APðkþ2Þ þ BPðkþ1Þ þ CPðkÞ k ¼ 1; 2; 3 . . .

ð1AÞ

It should be noted that a solution to a first-order
homogeneous finite difference equation:

zðkþ1Þ ¼ C1zðkÞ k ¼ 1; 2; 3 . . . ð2AÞ

has a solution which has the form:1,2

zðkþ1Þ ¼ C2C
k
1 k ¼ 1; 2; 3 . . . ð3AÞ

The particular solutions we are modeling would
require that C2> 0 and 0<C1< 1 for a mono-
tonically decreasing function with all values of
z(k)� 0.

Therefore, the general solution toEquation (1A)
will have a form consisting of a superposition of
solutions resembling Equation (3A):1–3

PðkÞ ¼ ��k þ ��k þ "�k ð4AÞ

The solution to Equation (1A), using the form of
Equation (4A), requires the definition of a third-
order auxiliary or characteristic equation:1–3

ðM � �ÞðM � �ÞðM � �Þ ¼ 0 ð5AÞ
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Expanding (5A) and collecting terms yields:

M3 þ ð�� � � � �ÞM2 þ ð�� þ �� þ ��ÞM � ��� ¼ 0

ð6AÞ

Rearranging:

M3 ¼ ð� þ � þ �ÞM2 � ð�� þ �� þ ��ÞM þ ���

ð7AÞ

The solutionwill then take on the requisite form as:

Pðkþ3Þ ¼ ð� þ � þ �ÞPðkþ2Þ � ð�� þ �� þ ��ÞPðkþ1Þ

þ ð���ÞPðkÞ: k ¼ 1; 2; 3 . . .

ð8AÞ

Therefore, by defining:

A ¼ ð� þ � þ �Þ ð9AÞ

and

B ¼ �ð�� þ �� þ ��Þ ð10AÞ

and

C ¼ ð���Þ ð11AÞ

Equation (8A) will then take on the form of
Equation (1A):

Pðkþ3Þ ¼ APðkþ2Þ þ BPðkþ1Þ þ CPðkÞ k ¼ 1; 2; 3 . . .

ð12AÞ

APPENDIX B

The following is a numerical example, which is
based upon Table 1 subject 101. Using the
exponential model from Equation (8):

QðkÞ ¼ ae�bk þ ce�dk þ fe�gk ð1BÞ

Based on non-linear curve fitting, coefficients for
the above equation were found to be:
a¼ 146.157, b¼ 2.24, c¼ 0.424, d¼ 0.023, f¼
2.625, g¼ 0.261. The general solution, P(k), is then
determined from conditions Equations (14) and
(15):

PðkÞ ¼ ��k þ ��k þ "�k ð2BÞ

Where

� ¼ a; � ¼ c; and

" ¼ f and � ¼ e�b; � ¼ e�d; � ¼ e�g
ð3BÞ

The coefficients, for the RFDE, P(kþ 3), can then be
determined by first calculating A, B, and C from
Equations (9A), (10A), and (11A), respectively
using Equation (15):

A ¼ ð� þ � þ �Þ ¼ ðe�b þ e�g þ e�dÞ
¼ ðe�2:24 þ e�0:261 þ e�0:023Þ ¼ 1:854

ð4BÞ

B ¼ �ð�� þ �� þ ��Þ
¼ �ðe�ðbþgÞ þ e�ðbþdÞ þ e�ðdþgÞÞ
¼ �ðe�2:501 þ e�2:263 þ e�0:284Þ ¼ �0:939

ð5BÞ

C ¼ ð���Þ ¼ ðe�b � e�d � e�gÞ
¼ e�ðbþdþgÞ ¼ e�ð2:24þ0:023þ0:261Þ ¼ 0:08

ð6BÞ

The RFDE is then expressed as in Equation (12A):

Pðkþ3Þ ¼ ð1:854ÞPðkþ2Þ � ð0:939ÞPðkþ1Þ

þð0:08ÞPðkÞ k ¼ 1; 2; 3 . . .
ð7BÞ

It should be noted that the initial conditions:
P(3), P(2), and P(1) are determined from either
Equations (1B) or (2B). Thus, Equations (1B), (2B),
and (7B) yield numerically identical results for the
entire time period. This is illustrated in both
Table 5 and Figure 5. Minor numerical differences
are attributable to rounding.

The initial conditions, for this case, are:
P1¼ 17.996, P2¼ 3.619, and P3¼ 1.772.

APPENDIX C

In order to assess the decrease in patient-to-
patient variability, of the coefficients of the RFDE
models, as compared to those of the exponential
models from which they are derived, it is
important to first note that coefficients b, d, and
g are all numerically nonnegative and nonzero.
Therefore:

0 < �e�b
�� �� < 1 and

0 < �e�d
�� �� < 1 and 0 < �e�gj j < 1

ð1CÞ

The variation in coefficient A, expressed as dA,
can then be stated using the chain rule:8

dA ¼ @A

@b
dbþ @A

@d
ddþ @A

@g
dg ð2CÞ

Realizing that: @A
@b ¼ �e�b, @A

@d ¼ �e�d, and @A
@g ¼

�e�g. Equation (2C) can then be expressed as:

dA ¼ ½�e�b�dbþ ½�e�d�ddþ ½�e�g�dg ð3CÞ
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Under these circumstances, the triangle inequal-
ity will be such that the absolute value of the sum
will be less than the sum of the absolute values.9

This and Equation (1C) therefore yield the
following valid expression:

dAj j � f e�bdb
�� ��þ e�ddd

�� ��þ e�gdgj jg ð4CÞ

Therefore:
dAj j < f dbj j þ ddj j þ dgj jg.

Similarly, the patient-to-patient variation, in
coefficient B, is:

dB ¼ @B

@b
dbþ @B

@d
ddþ @B

@g
dg ð5CÞ

In this case: @B
@b ¼ e�ðbþgÞ þ e�ðbþdÞ and @B

@d ¼
e�ðbþdÞ þ e�ðdþgÞ and @B

@g ¼ e�ðbþgÞ þ e�ðdþgÞ. Equa-
tion (5C) can then be expressed as:

dB ¼ e�bf½e�d� þ ½e�g�gdbþ e�df½e�b�
þ½e�g�gddþ e�gf½e�b� þ ½e�d�gdg

ð6CÞ

Again, use of the triangle inequality yields:

dBj j � f e�bf½e�d� þ ½e�g�gdb
�� ��þ e�df½e�b�þ

��

½e�g�gddj þ e�gf½e�b� þ ½e�d�gdg
�� ��g ð7CÞ

Equation (7C) can then be expressed as:

dBj j < 2f e�bdb
�� ��þ e�ddd

�� ��þ e�gdgj jg ð8CÞ

So that: dBj j < 2f dbj j þ ddj j þ dgj jg.
Also,

dC ¼ @C

@b
dbþ @C

@d
ddþ @C

@g
dg ð9CÞ

In this case: @C
@b ¼ @C

@d ¼ @C
@g ¼ e�ðbþdþgÞso that:

dC ¼ �e�ðbþdþgÞ½dbþ ddþ dg� ð10CÞ

Similarly,

dCj j � f e�ðbþdþgÞ�� �� � ½ dbj j þ ddj j þ dgj j�g ð11CÞ

Therefore: dCj j < f dbj j þ ddj j þ dgj jg.

Thus, the magnitude, of the patient-to-
patient variation in coefficient A, will be less than
the sum of: jdbj, jddj, and jdgj. This also applies
to C.

Whereas the magnitude, observed in the
patient-to-patient variation of coefficient B,
will be less than twice the sum of: jdbj, jddj, and
jdgj.

Furthermore, Equations (2C), (5C), and (9C)
can be summarized as:

dA

dB

dC

2
64

3
75 ¼

@A
@b

@A
@d

@A
@g

@B
@b

@B
@d

@B
@g

@C
@b

@C
@d

@C
@g

2
66664

3
77775

db

dd

dg

2
64

3
75 ð12CÞ
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