Welcome to IEEE Xplore 2.0: Solutions t...

Home | Login | Logout | Access Information | Alerts | Purchase History | Tart | Sitemap | Help

■ Abstract ◀ View TOC BROWSE SEARCH IEEE XPLORE GUIDE SUPPORT

e-mail Aprinter friendly

Login

Username Passw ord **>>**

» Forgot your passw ord?

Please remember to log out when you have finished your session.

You must log in to access:

- · Advanced or Author Search
- CrossRef Search
- · AbstractPlus Records
- Full Text PDF
- Full Text HTML

Access this document

Full Text: PDF (151 KB)

- » Buy this document now
- » Learn more about subscription options
- » Learn more about purchasing articles and standards

Rights and Permissions

» Learn More

Download this citation

Available to subscribers and IEEE members.

√ View TOC | Back to top ▲

Solutions to the Van der Pol Equation: a Model of Aortic Blood Flow

G.M. Atlas M.C. Desiderio

Department of Anesthesiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, New ark NJ 07103; Department of Chemical, Biomedical and Materials Engineering, Stevens Institute of Technology, Hoboken, NJ 07030;

This paper appears in: Bioengineering Conference, 2006. Proceedings of the IEEE 32nd Annual Northeast

Publication Date: 2006 On page(s): 143-144 Location: Easton, PA, USA, ISBN: 0-7803-9563-8

Digital Object Identifier: 10.1109/NEBC.2006.1629793 Date Published in Issue: 2006-05-15 11:33:30.0

Abstract

Quantitative modeling, of large arteries, plays an important role in predicting and describing functional hemodynamic components. Here we present a descending thoracic aortic model based upon the nonlinear Van der Pol equation. The model is created by modification of the solution to this second order differential equation. The model displays a stroke volume of 97.82 ml and an average velocity of 22 cm/s for a heart rate of 70 bpm. An aortic radius of 1.16 cm is assumed.

Index Terms

Available to subscribers and IEEE members.

References

Available to subscribers and IEEE members.

Citing Documents

Available to subscribers and IEEE members.

Help Contact Us Privacy & Security IEEE.org

© Copyright 2008 IEEE - All Rights Reserved

