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Abstract—Quantitative modeling, of large arteries, plays an 

important role in predicting and describing functional 

hemodynamic components. Here we present a descending 

thoracic aortic model based upon the nonlinear Van der Pol 

equation. The model is created by modification of the 

solution to this second order differential equation. The 

model displays a stroke volume of 97.82 ml and an average 

velocity of 22 cm/s for a heart rate of 70 bpm. An aortic 

radius of 1.16 cm is assumed.  
 

I. INTRODUCTION 

 Methods to model the cardiovascular system have taken an 

electrical form, namely the use of capacitance, resistance and 

inductance (inertance) to describe the arterial properties. The 

Windkessel model has been a widely accepted tool for analysis 

of the relationship between the components of an electrical 

circuit [4]. Generally attributed to Frank (1899), the Windkessel 

model can be described as an RC circuit [4]: 

            1/RC = - dP/PdV * dV/dt           (1) 
Modifications to this basic electrical model include nonlinear 

descriptions of compliance (8).  

In 1926, the Dutch physicist Balthazar Van der Pol described 

a negative resistance oscillator represented by:   

         v’’ - α (1 –v
2
)v’ + ω

2
v = 0     (2) 

Van der Pol essentially described a tunnel diode or vacuum 

tube (3) in which resistance is a nonlinear function of current. 

Two years later, Van der Pol further applied this negative 

resistance oscillator to model the heartbeat as a function of 

circuits describing the sinus node, auricles (atria) and 

ventricles. The result of his model was an electrocardiograph 

that included both P waves and QRS complexes despite lacking 

the T waves of repolarization.  

It is interesting to note that this electrical model shows a 

refractory period in which the condenser (capacitor) is not yet 

charged and thus will not excite the oscillator when an impulse 

is added. This mimicks the “all or nothing” response of the 

ventricles [2].   

In 1969, William Conrad investigated pressure-flow 

relationships in collapsible tubes. His experiments showed that 

during steady flow, partially collapsed tubes exhibit negative 

resistance in pressure-volume plots, and noted a conversion of 

dc power (steady) to ac power (oscillatory). In his experiments, 

the pressure drop, for a given volumetric flow rate, exhibited a 

nonlinear flow during partial collapse.  

Conrad established a link between a partially collapsed tube 

and Van der Pol oscillators succinctly, in which v of equation 

(4) describes dimensionless flow during a period of 

dimensionless time. Conrad suggested that this phenomenon 

can be applied to veins, hepatic venules and coronary arteries 

due to the periodic changes in transmural pressures in those 

areas. Moreover, the oscillation frequency depends on 

compliance and fluid inertance.  

While Conrad’s work describes steady flow, he asserted that 

nonsteady flows can approximated by a family of nonlinear 

resistances. Arteries also exhibit nonlinear stress-strain 

characteristics, mostly dependant upon the constitution of the 

vascular wall, that indeed vary in the circulatory system [4].  

It then follows that a model of flow in the cardiovascular 

system may be described as a nonlinear resistance oscillator, 

namely a second order differential equation with dependence on 

inductance, capacitance and resistance of an analog circuit. This 

model would be an analogous to Windkessel, defining a 

nonlinear resistance, rather than compliance to approximate 

flow. In the current method, blood flow velocity waveforms are 

generated from the solution set of the Van der Pol equation (2) 

under certain restrictions and manipulations. 

 
II. METHODS 

 The Van der Pol equation may be solved computationally 

using a variety of software methods. Here Matlab version 6.5 

release 13.01 (Mathworks™) provided the appropriate tools to 

solve the equation using the ODE45 routine (non-stiff, medium 

order method) for initial conditions [1 -3] over a span of [0 20]. 

Parameterizing the coefficients of equation (2) will be 

necessary to reproduce a graph of aortic blood flow velocity.  

Equation (2) contains coefficients α and ω
2
 in which: 

                           α=R/L                        (3) 

                        ω
2
 = 1/LC                     (4) 

                      Trel= 1.61RC                   (5) 
 Manipulation of these variables will recreate the 

characteristics of the waveform. Given the most basic form of 

equation (2), increasing the ratio, of resistance to inductance, 

produces changes that increase the period and magnitude of the 

waveform. Furthermore, increasing ω leads to an increase in the 

magnitude and a decrease in period. 

 Following initial parameterization, steps are needed in 

order to make the waveform physiologically significant. A 

Matlab M-file served to process the solutions of equation (2) 
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and produce a more meaningful graph. These steps included 

numerical addition, to scale the oscillations around a baseline, 

as well modulation of the oscillations. Modulation was needed 

to pass every other oscillation, creating the baseline flow and 

thus a diastolic period. Multiplication of the waveform was 

done in order to scale the velocities to physiological conditions. 

Time is then scaled by setting the distribution of points for a 

given time period. The result is scaled view of the solutions to 

the Van der Pol equation in which every other oscillation is 

passed centered about a new baseline. The parameterized 

equation to govern the model is then 

             v’’ – (1-v
2
)v’ +  5.6v = 0          (6) 

The above method is only one of many possible solutions to 

the second order differential equation. In this investigation, a 

model of the distal thoracic aorta is used to aid in direction.     

III. RESULTS 

 
Figure 1. Van der Pol Model of Aortic Blood Flow 

 

Quantity Value 

Heart Rate 69.75 bpm 

Period 0.86 sec 

Flow Time 
Flow Time Corrected 

    0.3871 sec 
    0.4174 sec 

Systolic % 45% 

Peak Velocity 82.34 cm/s 

Avg. Velocity 21.69 cm/s 

Stroke Distance 16.19 cm 

Flow Volume 68.47 ml 

Stroke Volume 97.82 ml 

Cardiac Output 6.8 L/m 

 

Table 1. Van der Pol Model Characteristics  

(Assuming a radius of 1.16 cm) 

IV. EVALUATION 

 For the model to truly be physiologically accurate, it must 

contain significant information about the nature of flow. By 

treating the model as an aortic signal generated noninvasively 

from a transesophageal Doppler, cardiovascular parameters can 

be extrapolated. First, the heart rate is determined to be 

approximately 70 bpm, with a flow time (synonymous with left 

ventricular ejection time) of .3871 seconds. Alternatively, this 

corresponds to a systolic time of 45% of the cardiac cycle. This 

is close to the human cardiac cycle in which the majority of the 

cardiac period in diastole. Average velocity is calculated to be 

22 cm/s, which is slightly higher than averages of 16-18 cm/s in 

the thoracic aorta [7]. Peak velocity is seen to be 82.34 cm/s, 

which is certainly reasonable in a vessel where the peak 

velocity has been noted to be as high as 1 m/s [6]. By applying 

Doppler analysis techniques, stroke distance is calculated to be 

16.19 cm [6]. This also is useful in quantifying left ventricular 

function. Assuming an aortic radius of 1.16 cm from the 

thoracic aorta [5] and that 30% of blood flows to the head and 

upper extremities [7], stroke volume is determined to be 97.82 

ml producing a cardiac output of 6.8 L/min. These values 

correlate well with physiological conditions of 53-133 ml stroke 

volume and 3.6-9.5 L/m of cardiac output in man [4]. 

 

V. DISCUSSION 

The comparable nonlinear features, of both the 

cardiovascular system and the Van der Pol equation, make the 

current model applicable to physiological characteristics. 

Manipulation of the core equation can yield waveforms which 

closely match aortic blood flow velocity. This scaling is not 

solely contrived mathematics since the Van der Pol equation 

describes dimensionless time and dimensionless flow. The 

result of the Maltab solution, after manipulation, is a waveform 

of particularly interesting qualities if we assume a certain vessel 

radius. From a mathematical waveform analysis, it is evident 

that the model is a reasonable replication of thoracic aortic 

blood flow velocity. The model may be adapted to different 

rates and peak velocities. However, these changes will affect 

volume flow, as well as peak and mean velocities. Therefore, 

the physiological significance of these adaptations may limit the 

application of the model to other vessels in the periphery.  
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