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Abstract:  -  Pharmacokinetic  models  have  typically  been  developed  using  traditional  exponential 
equations.  This  paper  summarizes  a  mathematical  technique  of  transforming  multi-compartment 
models,  for  both  bolus  and  infusion  data,  into  recursive  finite  difference  equations  (RFDEs). 
Specifically, a bolus can be represented as homogenous RFDE whereas an infusion can be represented 
as  inhomogenous  RFDE.  In  addition  to  being  identically  as  accurate  as  traditional  exponential 
equations, RFDE pharmacokinetic models have fewer coefficients. The coefficients of the RFDE also 
appear to have an overall reduction in patient-to-patient variability when compared to those of the 
traditional exponential models from which they were derived. However, initial conditions for RFDEs 
have to be specified. Pharmacokinetic modeling, using RFDEs, is feasible and may offer advantages 
over traditional exponential equations.
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1 Introduction
The  application  of  recursive  finite  difference 
equations  (RFDEs)  in  pharmacokinetics  may 
offer advantages for modeling,  simulation and 
situations requiring automatic control.

This paper demonstrates how RFDE models, 
of both bolus and infusions of medications, can 
be derived directly from traditional exponential 
equations.

2 Bolus Model
A typical  three  compartment  pharmacokinetic 
model,  for  a  single  bolus,  is  represented  as  a 
summation of exponential equations:

Q(k) = ae-bk + ce-dk + fe-gk  .              (1)

The associated homogeneous RFDE for this 
would be [1]:

P(k+3) =  A·P(k+2) +  B·P(k+1) +  C·P(k)  .           (2)

Note  that  P represents  measured  blood  or 
plasma levels of the given medication each  kth 

unit of time starting from k = 1.
The general  solution for equation (2) is  [3] 

[4] [5]:

P(k) = αβk + γδk + εζk  .                 (3)

2.1 Solution for the bolus model
The  solution  for  the  bolus  model  is  first 
determined by equating (1) with (3) [1]:

αβk + γδk + εζk = ae-bk + ce-dk + fe-gk .   (4)
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The above equality is valid if:

α = a, γ = c, and ε = f  ,               (5)
and

β = e-b, δ = e-d, ζ = e-g .               (6)

2.1.1 Development of the RDFE bolus model
The  solution  of  the  RFDE  (2)  is  then 
determined  using  the  third-order  auxiliary  or 
characteristic equation:

(M - β)(M - δ)(M - ζ) = 0.                  (7)

This is expanded as:

  M3 + (-β - ζ - δ)M2 + (βζ + βδ + δζ)M - βδζ = 0 .   (8)

Rearrangement yields:

M3 = (β + ζ + δ)M2 - (βζ + βδ + δζ)M + βδζ  .   (9)

The RFDE (2) will then take on the above form 
if:

A = (β + ζ + δ) ,                         (10)

B = -(βζ + βδ + δζ) ,                     (11)
and

C = (βδζ) .                            (12)

3 Infusion Model
The traditional exponential equation for a third 
order infusion model is:

Q(k) = h - (ae-bk + ce-dk + fe-gk)  .          (13)

The associated inhomogeneous RFDE is then 
[2]:

P(k+3) = A·P(k+2) + B·P(k+1) + C·P(k) + R .       (14)

3.1 Solution for the infusion model
The  solution  for  (14)  represents  the 
superposition  of  the  homogeneous  and 
particular solutions [3], [4], [5]. 

Thus,  the  homogeneous  solution  is 
determined with  h =  0  and using  the  method 
shown in (7) through (12).

The  particular  solution  is  then  used  to 
determine the value for the constant R.

3.1.1 The  particular solution  for  the  infusion 
model
The particular  solution  is  found  by  algebraic 
rearrangement of (14) [2]:

P(k+3) - A·P(k+2) - B·P(k+1) - C·P(k) = R .           (15)

It should be noted that as k → ∞ :

P(k+3) = P(k+2)  = P(k+1) = P(k) = h .             (16)

Thus,  the  infusion  model  is  assumed  to 
eventually reach a steady-state, or plateau, with 
an established value of h.

Substituting (16) into (15) yields:

h - A·h - B·h - C·h = R   .                 (17)

Thus:

R = h·[1 - (A + B + C)]  .                   (18)

It  should  be  noted  that  this  represents  an 
application  of  the  method  of  undetermined 
coefficients.

4 Patient-to-patient variability
The decrease in patient-to-patient variability, of 
the  coefficients  of  the  RFDE  models,  as 
compared to  those of the exponential  models, 
can be assessed by first noting that coefficients 
b, d, and g are all numerically nonnegative and 
nonzero:

0∣−e−b∣1 ,                   (19)

0∣−e−d∣1 ,                   (20)

and 0∣−e−g∣1 .               (21)

The  patient-to-patient  variability  of 
coefficients A,  B,  or  C of  either  the  bolus 
(homogeneous)  or  infusion  (inhomogeneous) 
models can then be examined using the chain 
rule and the total differential. For coefficient  A 
this is:
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∆ A=∂ A
∂b

∆ b∂ A
∂d

∆ d∂ A
∂ g

∆ g .         (22)

Examination of (10) shows:

 ∂ A
∂b

=−e−b ,                       (23)

∂ A
∂ d

=−e−d ,                       (24)

and

∂ A
∂g

=−e−g .                      (25)

Substituting (23) through (25) into (22) yields:

∆ A=−e−b∆ b−e−d∆ d −e−g∆ g .  (26)

Use  of  the  triangle  inequality  will  be  such 
that the absolute value of the sum will less than, 
or equal to, the sum of the absolute values:

∣∆ A∣ ∣−e−b ∆ b∣∣−e−d ∆ d∣∣−e−g ∆ g∣ .   (27)

Therefore:

∣∆ A∣∣∆ b∣∣∆ d∣∣∆ g∣ .               (28)

Similarly,  the  patient-to-patient  variability  of 
coefficient B can be found:

∆ B=∂ B
∂b

∆ b∂B
∂d

∆ d∂ B
∂g

∆ g .         (29)

Examination of (11) shows:

 ∂ B
∂b

=e−bg e−bd                       (30)

∂ B
∂ d

=e−bd e−d g                      (31)

and

∂ B
∂g

=e−bg e−d g .                      (32)

Equation (29) can then be expressed as:

∆B = e-b{[e-d] + [e-g]}∆b + e-d{[e-b] + [e-g]}∆d        
+ e-g{[e-b] + [e-d]}∆g .  (33)

Use of the triangle rule then shows:

|∆B| ≤ {|e-b{[e-d] + [e-g]}∆b| + |e-d{[e-b] + [e-g]}∆d|       
+ |e-g{[e-b] + [e-d]}∆g|}. (34)

Therefore:

|∆B| < 2{|e-b∆b| + |e-d∆d| + |e-g∆g|} .            (35)

Thus:

|∆B| < 2{|∆b| + |∆d| + |∆g|}.                  (36)

The variation in C can be determined as well:

∆ C=∂C
∂ b

∆ b∂C
∂ d

∆ d∂C
∂g

∆ g             (37)

Examination of (12) shows that:

∂C
∂b

=∂C
∂ d

=∂C
∂g

=−e−bdg    .           (38)

Thus:

∆C = -e-(b+d+g)[∆b + ∆d + ∆g] .                (39)

Therefore:
|∆C| ≤ {|e-(b+d+g)|•[|∆b| + |∆d| + |∆g|]}  .      (40)

Thus:

|∆C| < {|∆b| + |∆d| + |∆g|}.                 (41)

To summarize, the patient-to-patient variation 
in coefficient A will be less than the sum of: 
|∆b|, |∆d|,and |∆g|. This also applies to C .

Whereas  the  magnitude,  observed  in  the 
patient-to-patient variation of coefficient B, will 
be less  than  twice the  sum of:  |∆b|,  |∆d|,  and
|∆g|.

Note that this analysis of the variability of A, 
B,  and  C applies  to  both  the  bolus 
(homogeneous)  and  infusion  (inhomogeneous) 
models.  Figure  1  illustrates  the  range  of   the 
coefficients  for  both  the  bolus  RFDE  and 
traditional  exponential  equations  from 
clinically-acquired data.   
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Figure 1.  Box-plots of coefficients A, B, and 
C, of the bolus RFDE model, show less patient-
to-patient variability than those coefficients  of 
the traditional exponential model.

 4.1 Patient-to-patient variability for the particular 
solution

The patient-to-patient variability of the constant R for 
the  infusion  (inhomogeneous)  model  can  also  be 
assessed.

Substituting the definitions of coefficients  A, 
B,  and  C from equations  (10),  (11),  and (12) 
yields:

R = h·[1 - ({e-b + e-g + e-d}-{e-(b + g) + e-(b + d)          

 + e-(d + g)} + {e-(b + d + g)})].  (42)

Each partial derivative is then obtained:

∂ R
∂b

=h⋅e−b 1−e−g 1−e−d  ,            (43)

∂ R
∂ d

=h⋅e−d 1−e−b 1−e−g  ,             (44)

∂ R
∂ g

=h⋅e−g 1−e−b1−e−d  ,            (45)

and

∂ R
∂ h

=1−e−b 1−e−g 1−e−d  .          (46)

Combining (43) through (46):

∆ R=∂ R
∂ b

∆ b∂R
∂ d

∆ d∂R
∂ g

∆ g∂R
∂h

∆ h .     (47)

Note inequalities (19) through (21) as well  as 
the following inequalities:

0∣1−e−b∣1 ,                   (48)

0∣1−e−d∣1 ,                   (49)

and 0∣1−e−g∣1 .                  (50)

Equation  (47)  can  then  be  expressed  as  an 
inequality:

∣Δ R∣h ∣Δb∣∣Δd∣∣Δ g∣∣Δh∣ .        (51)

Therefore,  small  changes in  R are  less than a 
value which is proportional to the sum of the 
small changes in b, d, g, and h.

If m = max(|h|, 1) then :
|ΔR| < m{|Δb| + |Δd| + |Δg|+ |Δh|} .          (52)

Figure  2  illustrates  the  range  of   the 
coefficients  for  both  the  infusion  RFDE  and 
traditional  exponential  equations  from 
clinically-acquired data.
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Figure  2.  Box-plots  of  Coefficients  A,  B,  C, 
and R of the infusion RFDE model, show less 
patient-to-patient  variability  than  those 
coefficients  of  the  traditional  exponential 
model.

5 Example:  Bolus RFDE

The following is a numerical example, of a 
bolus, which is based upon a single patient. 
Using the exponential model from (1) :

Q(k) = ae-bk + ce-dk + fe-gk .                      (53)

Based on non-linear curve fitting, coefficients 
for  the  above  equation  were  found  to  be:
a = 146.157,  b = 2.24,  c = 0.424,  d = 0.023,
f = 2.625, g = 0.261. 

The general solution, P(k), is then determined 
from equation (3):

P(k) = αβk + γδk + εζk .                      (54)

Where:  α =  a,  γ = c, and  ε  =  f and  β = e-b,  
δ = e-d, ζ = e-g .

The coefficients, for the RFDE, can then be 
determined by first calculating A, B, and C from 
(10), (11), and (12) : 

A = (β + ζ + δ) = (e-b + e-g + e-d) =                         
(e-2.24 + e-0.261 +e-0.023) = 1.854 , (55)

B = -(βζ + βδ + δζ) = -(e-(b+g) + e-(b+d) + e-(d+g)) =     
-(e-2.501 + e-2.263 + e-0.284) = -0.939 , (56)

C = (βδζ) = (e-b•e-d•e-g) = e-(b+d+g) =                      
e-(2.24 + 0.023 + 0.261) = 0.08  . (57)

The RFDE is then expressed as in (2):

P(k+3) = (1.854)P(k+2) - (0.939)P(k+1) + (0.08)P(k). (58)

It  should  be  noted  that  the  initial  conditions: 
P(3),  P(2),  and P(1) are determined from either 
(53)  or  (54).  Thus,  (53),  (54)  and  (58)  yield 
numerically identical results for the entire time 
period.  This  is  illustrated  in  Figure  1.  Minor 
numerical  differences  are  attributable  to 
rounding.  
The  initial  conditions,  for  this  case,  are:
P1=17.996,  P2 = 3.619, and P3 = 1.772 µg/ml. 
Figure 3 illustrates the serum levels of propofol 
modeled using both techniques.
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Figure  3. A  graphical  representation  of  the 
measured propofol bolus concentrations as well 
as the RFDE, general solution, and exponential 
models.  Note  that  the  lines  for  the  models 
overlap. This is from a single subject. 

5 Example:  Infusion RFDE

The  following  is  a  numerical  example,  of  an 
infusion,  which  is  also  based  upon  a  single 
subject. Using the exponential model from (13):

Q(k) = h - (ae-bk + ce-dk + fe-gk).                 (59)

Based on non-linear  curve  fitting,  coefficients 
for the above equation were found to be:  a = 
0.463, b=0.493, c = 0.13,  d = 0.012, f = 0.359,
g = 0.013, and h = 1.048.

The general solution, P(k), is then determined 
from using the same form as (3) :

P(k) = h - (αβk + γδk + εζk).                (60)

Where:  α =  a,  γ = c,  and  ε =  f and  β = e-b,  
δ = e-d, ζ = e-g.

The coefficients, for the RFDE, can then be 
determined  by  calculating  A,  B,  and  C from 
(10), (11), and (12) in a manner similar to the 
bolus:

A = (β + ζ + δ) = (e-b + e-g + e-d) =                         
(e-0.493 + e-0.013 +e-0.012) = 2.586 , (61)

B = -(βζ  + βδ  + δζ) = -(e-(b + g) + e-(b + d) + e-(d + g)) =   
 -(e-0.506 + e-0.505 + e-0.025) = -2.181 , (62)

C = (βδζ) = (e-b•e-d•e-g) = e-(b + d + g) =             
 e-(0.493 + 0.012 + 0.013) = 0.596 .  (63)

The homogeneous RFDE is then expressed as in 
(2):

P(k+3) = (2.586)P(k+2) - (2.181)P(k+1) + (0.596)P(k) . (64)

The  constant  R is  then  determined  using  the 
method of undetermined coefficients:

R = h·[1 - (A + B + C)].            (65)

R = 1.048·[1 – (2.586 – 2.1826 + 0.596)] = 6.24·10-5 .
(66)

Thus,  the  complete  solution  is  the 
superposition,  or  sum,  of  equations  (64)  and 
(66):

P(k+3) = (2.586)P(k+2) - (2.181)P(k+1) + (0.596)P(k) + 6.24·10-5. 
(67)

The  initial  conditions,  for  this  case,  are:
P1 = 0.096, P2 = 0.283, and P3 = 0.399 µg/ml.  
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Figure  4.  A  graphical  representation  of  the 
measured  propofol  infusion  concentrations  as 
well  as  the  RFDE,  general  solution,  and 
exponential models. Note that the lines for the 
models overlap. This is from a single subject. 
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6 Conclusion
Recursive  finite  difference  equations  can  be 
applied in pharmacokinetic  modelling.  Further 
research  and  applications,  to  determine  their 
utility and limitations, appears indicated.
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