AMERICAN SOCIETY OF ANESTHESIOLOGISTS

October 18-22, 2008 Orlando, FL

Home Abstract Archive Search Abstracts 2008 Session Grid (Orlando) 2008 Meeting Website Policy Statements ASA Website Feedback

Visit Anesthesiology.org

Annual Meeting Abstracts Home of Scientific Abstracts Presented Since 2000

Previous Abstract | Next Abstract

Printable Version

A449 October 13, 2007 2:00 PM - 4:00 PM Room Hall D, Area O,

A Mathematical Examination of I:E Ratio and PEEP on Mean Airway Pressure Utilizing a Lung Model

Glen Atlas, M.D., M.Sc., Sunil Dhar, Ph.D., Emmanuel Rodriguez, B.S. Anesthesiology, University of Medicine and Dentistry of NJ, Newark, New Jersey

During mechanical ventilation, mean airway pressure, P_m, is considered a measure of total alveolar

recruitment.^{1, 2} Increases in inspiratory time have been shown to beneficial, in some studies, in the management of ARDS and other life-threatening pulmonary conditions. This is frequently through the application of inverse ratio (IRV) ventilation.³ Furthermore, positive end-expiratory pressure, PEEP, is also utilized in these situations.⁴ However, excessive inspiratory time can lead to "air trapping" by not allowing adequate expiratory time. In addition, excessive PEEP can lead to pulmonary barotrauma. A mathematical model, incorporating P_m , I:E ratio, and plateau pressure, P_L , has been previously derived:⁵

 $P_m/P_L = [(I:E) + R]/[(I:E) + 1]. (1)$

Where $R = PEEPIP_L$.

In order to examine this relationship, a lung model was created using a typical 3 liter collapsible bag, from an anesthesia circuit, with a large rubber band placed circumferentially around the bag. Using a Dräeger Narkomed 6000, a 1 liter tidal volume was then delivered, to this model, at a rate of 10 breaths per minute. PEEP was varied from 0 to 8 cm H_20 and I:E ratio was also varied from 1:5 to 5:1.

An analysis of these data showed an R-squared coefficient of 98.5% when compared to the predicted values from equation (1).

In conclusion, a mathematical model of mean airway pressure has been demonstrated in a bench setting. Further assessment of this physical relationship, in both normal and pathological states, appears indicated.

1. Boros SJ. Variations in inspiratory:expiratory ratio and airway pressure wave form during mechanical ventilation: the significance of mean airway pressure. *Journal of Pediatrics*. 94(1):114-117, 1979.

2. Huang, CC, MJ Shih, YH Tsai, YC Chang, TCY Thomas, KH Hsu. Effects of inverse ratio ventilation versus positive end-expiratory pressure on gas exchange and gastric intramucosal PCO₂ and *p*H under constant mean airway pressure in acute respiratory distress syndrome. *Anesthesiology* 95(5):1182-1188, 2001.

3. Mercat, A, JL Diehl, F Michard, N Anguel, JL Teboul, J Labrousse, C Richard. Extending inspiratory time in acute respiratory distress syndrome *Crit Care Med.* 29(1):40-44, 2001.

4. Naik S, A Greenough, FJ Giffin, A Baker. Manoeuvres to elevate mean airway pressure, effects on blood gases and lung function in children with and without pulmonary pathology. *European Journal of Pediatrics* 157(4):309-312, 1998.

5. Atlas G. A mathematical model of mean airway pressure based upon positive end-expiratory pressure, I:E ratio, and plateau pressure. *Cardiovascular Engineering: An International Journal* 3(4): 131-139, 2003.

Anesthesiology 2007; 107: A449

ASA Abstracts - Abstract

Copyright © 2008, American Society of Anesthesiologists. All rights reserved.