A. Financial Relationship: No -

Title: A Second Look at the Second Gas Effect

Glen Atlas, M.D., M.Sc ${ }^{1,2}$, Arthur Ritter, Ph.D. ${ }^{2}$ and Sunil Dhar, Ph.D. ${ }^{3}$. ${ }^{1}$ Anesthesiology, UMDNJ/Newark; ${ }^{2}$ Biomedical Engineering, Stevens Institute of Technology and ${ }^{3}$ Mathematical Sciences, New Jersey Institute of Technology.

Abstract

Preexisting data, comparing dogs anesthetized with halothane and $10 \% \mathrm{~N}_{2} \mathrm{O}$, to halothane and $70 \% \mathrm{~N}_{2} \mathrm{O}$, have been re-analyzed using a single-compartment pharmacokinetic model. Statistically significant differences have been found between the pharmacokinetic models as well as the area under the concentration of halothane versus time curves.

Introduction

Potent inhaled anesthetics are frequently administered concomitantly with various concentrations of $\mathrm{N}_{2} \mathrm{O}$. It has been observed that the concentration of these agents will rise, at a greater rate, when administered with higher concentrations of $\mathrm{N}_{2} \mathrm{O}$. This "second gas effect" (SGE) has been demonstrated in several studies ${ }^{1,2,3}$. It has been refuted in one. ${ }^{4}$

Methods

Using data from a prior-published animal study ${ }^{1}$, end-tidal concentrations of halothane, as a function of time, were fit to an exponential equation: $H(t)=h-\left[f \mathrm{e}^{(-g t)}\right]$. This process was repeated for halothane concentrations which were reported in the presence of $10 \% \mathrm{~N}_{2} \mathrm{O}$ as well as $70 \% \mathrm{~N}_{2} \mathrm{O}$. Numerical integration was then used to evaluate the area under the curve (AUC) for each $H(t)$.

Results

$10 \% \mathrm{~N}_{2} 0+\mathrm{HAL}$	\boldsymbol{f}^{*}, g, h	$\mathbf{A U C}^{\#}$	$70 \% \mathrm{~N}_{2} 0+\mathrm{HAL}$	\boldsymbol{f}^{*}, g, h	$\mathbf{A U C}^{\#}$
$\operatorname{dog} 1$	$\mathbf{0 . 2 9 9}, 0.261,0.600$	$\mathbf{1 . 8 2 8}$	$\operatorname{dog} 1$	$\mathbf{0 . 2 6 4}, 0.301,0.613$	$\mathbf{1 . 9 9 7}$
$\operatorname{dog} 2$	$\mathbf{0 . 2 9 7}, 0.398,0.541$	$\mathbf{1 . 7 6 7}$	$\operatorname{dog} 2$	$\mathbf{0 . 2 9 8}, 0.332,0.604$	$\mathbf{1 . 9 4 1}$
$\operatorname{dog} 3$	$\mathbf{0 . 2 1 2 , 0 . 3 0 3 , 0 . 4 6 1}$	$\mathbf{1 . 4 8 1}$	$\operatorname{dog} 3$	$\mathbf{0 . 1 4 5}, 0.318,0.457$	$\mathbf{1 . 5 9 1}$
$\operatorname{dog} 4$	$\mathbf{0 . 2 6 6}, 0.405,0.475$	$\mathbf{1 . 5 4 9}$	$\operatorname{dog} 4$	$\mathbf{0 . 2 0 6}, 0.343,0.528$	$\mathbf{1 . 7 9 5}$
$\operatorname{dog} 5$	$\mathbf{0 . 3 6 7}, 0.226,0.574$	$\mathbf{1 . 5 2 5}$	$\operatorname{dog} 5$	$\mathbf{0 . 2 4 1}, 0.531,0.473$	$\mathbf{1 . 6 5 8}$

Table. A comparison using prior-published data, of dogs anesthetized with halothane and 10% $\mathrm{N}_{2} \mathbf{0}$, to halothane and $70 \% \mathrm{~N}_{2} \mathbf{0}$. Coefficient f and the area under the curve (AUC) were both found to be significantly different using a paired analysis: * $(P=0.026),{ }^{\#}(P=0.001)$.

Discussion and Conclusion

The law of mass action may explain the significantly different pharmacokinetics associated with the SGE. $\mathrm{N}_{2} \mathrm{O}$ and halothane both compete to combine with reactive and non-reactive substances. Thus, a greater $\mathrm{N}_{2} \mathrm{O}$ concentration will be associated with a greater concentration of halothane. This leads to an overall increase in the bioavailability of halothane. Furthermore, this effect has now been associated with a greater area under the halothane vs. time curve (AUC). In addition, a significantly different pharmacokinetic model has also been established for halothane in the presence of $70 \% \mathrm{~N}_{2} \mathrm{O}$ as compared to $10 \% \mathrm{~N}_{2} \mathrm{O}$.

References

1. Epstein RM et al. Influence of the concentration effect on the uptake of anesthetic mixtures: the second gas effect. Anesthesiology 1964;25:364-71.
2. Goldman \sqcup. Anesthetic uptake of sevoflurane and nitrous oxide during an inhaled induction in children. A\&A 2003;96:400-6.
3. Taheri S, Eger EI. A demonstration of the concentration and second gas effects in humans anesthetized with nitrous oxide and desflurane. A\&A 1999;89:774-80.
4. Sun X-G et al. The "second gas effect" is not a valid concept. A\&A 1999;88:188-92.

Funding: None

Summary: This implies that halothane, in the presence of $70 \% \mathrm{~N}_{2} \mathrm{O}$, is associated with different pharmacokinetics, as well as a different AUC, than halothane in the presence of $10 \% \mathrm{~N}_{2} \mathrm{O}$.

