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Introduction
Volume kinetics (VK) is the study of the physiologic response to 
the intravenous (IV) infusion of fluids. Its utility is virtually 
ubiquitous within the practice of anesthesia and related medical 
disciplines. Fundamentally, VK is therefore the analysis of the 
pharmacokinetics of clinically used IV resuscitation agents: crys-
talloids and colloids. The basis for this is sequential measure-
ments of hemoglobin (Hb) and the calculation of plasma 
dilution (PD) as a function of time.1

Both hypervolemia and hypovolemia are known risk factors 
which can increase hospital-based length of stay and postop-
erative morbidity and mortality.2,3 Multiple clinical techniques 
are available to assess volume status in high-risk surgical 
patients. However, these may be invasive as they require central 
venous or arterial access.4,5 Minimally-invasive technologies, 
such as the esophageal Doppler monitor (EDM), have been 
developed and may also be used to evaluate patient volume sta-
tus as well as other hemodynamic parameters.6

Fluid resuscitation is universally employed during clinical 
hospital-based patient management but is complicated by 
both the choice and quantity of agent. Specifically, these 

drugs are divided into two primary categories: crystalloids 
and colloids. Although a considerable clinical controversy 
has historically existed when comparing them, there is a 
growing body of evidence to suggest that colloid-based 
resuscitation may be advantageous, particularly in hypov-
olemic shock states.7,8

The assessment of PD allows for the clinical measurement 
of the pharmacokinetic effects, of either of these agents, to be 
quantitated. In addition, the ability to noninvasively estimate 
Hb concentration has recently emerged. Consequently, PD 
may be rapidly and safely assessed in real time.9

This article develops and examines the clinical application of 
a mathematical representation of PD using an IV-administered 
crystalloid solution. Note that a single model is developed 
which represents both the infusion period and the postinfusion 
period and is based on a first-order linear integro-differential 
equation (IDE) with constant coefficients. A closed-form solu-
tion is obtained using the Laplace transform technique.10 
Furthermore, this model has been successfully applied to preex-
isting clinical data, which used invasive measurements of Hb, 
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on humans undergoing either IV or inhalational anesthesia dur-
ing thyroid surgery.11

Applying Euler’s formula,12 retrospective examination of 
the patient data yielded two mathematically unique expres-
sions from the Laplace-based solution to the IDE during the 
infusion period. This resulted in the separation of the patients 
into two distinct groups.

Specifically, Group 1 patients’ infusion-based PD responses 
could be modeled using an exponentially decaying hyperbolic 
sine function, whereas Group 2 patients had infusion-based 
PD responses which were modeled using an exponentially 
decaying trigonometric sine function. In addition, the area 
under the PD curve (AUC) during the infusion period was 
statistically greater for Group 2 patients. This implies that 
Group 2 patients had a significantly decreased initial volume 
status in comparison with that of Group 1. Furthermore, 
Group 2 patients continued to have a statistically greater AUC 
during the postinfusion period.

Thus, IDE modeling of PD may be potentially useful, as an 
adjunct clinical tool, in identifying, managing, and assessing 
patient-specific responses to the administration of IV fluid. 
This model also illustrates that the generation of edema and 
the recruitment of edema may occur simultaneously. 
Furthermore, the rate of the recruitment of edema may also 
occur in a manner which is both directly and indirectly depend-
ent on PD status.

Development of a linear f irst-order IDE model of 
PD during infusion

The fundamental concept employed in VK analysis is that of a 
time-dependent PD function, pd(t). Specifically, plasma vol-
ume as a function of time is denoted as V(t), whereas a time-
dependent change in V(t) is represented as ∆V t( ) . Subsequently, 
pd(t) can be defined as the net relative change in plasma volume 
as a function of time:13
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Note that the term μ is a dimensionless “dummy variable,” 
whereas V0  represents the initial plasma volume which is 
typically expressed with units of milliliters (mL). Furthermore, 
V t V( ) ≥ 0  Note that during postinfusion equilibration, clini-
cal data demonstrate that pd(t) is occasionally less than 0, and 
therefore, V t V( ) < 0 . This could also occur as a result of 
hemodialysis or diuretic therapy. In addition, pd(t) is a dimen-
sionless function. Moreover, V V( )0 0= , and therefore, 
∆V ( )0 0= .

Clinically, pd t( )  is determined using serial measurements of 
each patient’s Hb at an ith point in time (ti) as well as the initial 
value of their hematocrit, Hct0 (see Appendix 1). Typically, this is 
done during, or just after, an IV infusion of a crystalloid solution. 

Sequential boluses of IV solutions may also be used. In addition, 
colloid-based IV preparations have been employed for VK analysis.

Thus, the PD function is typically examined using serial 
measurements of a patient’s Hb:
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Note that each time interval ti is associated with a measured 
Hb value of Hbi. Therefore,

	 pd t pd Hb ii i( ) = ( ) = …0 1 2, , 	 (3)

The net flow rate of plasma volume, Q t( ) , would then be 
represented as:

	 Q t V
d pd t

dt
dV t

dt( ) =
( )( )

=
( )

⋅0 	 (4)

Therefore, when Q t( ) > 0  there would be a net increase in 
each patient’s plasma volume, whereas a net decrease in plasma 
volume would be associated with Q t( ) < 0 .

The volume of IV fluid infused into the patient is defined 
as: 

	 V t R d R tin i

t

i( ) = =⋅ ⋅∫ µ
0

	 (5)

where Ri represents a constant flow rate, typically of a crystal-
loid-based IV fluid, and is usually expressed in terms of milli-
liter per minute. Furthermore, Vin ( )0 0= . Note that during the 
postinfusion period, Ri represents a constant flow of edema fluid back 
into the plasma space. This value of Ri would most likely be different 
from that of Ri during the infusion period. Therefore, Ri continues to 
remain greater than zero during the postinfusion period.

Thus, Ri is independent of the PD status during the infusion 
period, whereas Ri appears to be indirectly dependent on the 
PD status during the postinfusion period (see “Results”).

For the purposes of this model, the volume “cleared” from the 
plasma, as a function of time, is defined as follows (significant 
evaporation and/or blood loss can potentially result in changes in 
PD. However, these effects are neglected within this analysis):

	 V t Cl pd t dt A pd t dtdtout ( ) = ⋅ ( ) + ⋅ ( )∫ ∫∫ 	 (6)

Where pd t dt( )∫  represents the AUC. This single indefinite 
integral characterizes an initial “fast response” in terms of vol-
ume elimination. Note that V tout ( )  results primarily from 
urine production, lymphatic drainage and the formation of 
edema.

Furthermore, pd t dt dt( )∫∫  can be thought of as an “exag-
gerated” AUC. This represents an initial “slow response.” 
However, the double integration process eventually “overtakes” 
that of the single integration process. This is illustrated in 
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Figure 1. It should also be noted that Cl has units of mL/min, 
whereas A has units of mL/min2.

The physiologic foundation for equation (6) is based on clin-
ical observations of both urine output and patient weight gain 
during IV infusions.14–16 However, neither the single integral 
term nor the double integral term is specific for either of these 
physiological phenomena. Rather, the volume of edema and 
urine formed are “lumped together” and modeled as having 
quantities which would result from a combination of both the 
single and double integration processes. Figure 1 illustrates this 
heuristic approach.

It should also be appreciated that endocrine-based hor-
mones such as renin, angiotensin, aldosterone, atrial natriuretic 
factor, and antidiuretic hormone (ADH) all affect PD both 
directly and indirectly17 (see “Discussion”).

Finally, using the first derivatives with respect to time of 
equations (5) and (6), the flow, both into and out of the plasma, 
can be described. This is illustrated in Figure 2. Using equation 

(6), the flow out of the plasma, Q tout ( )  is therefore: Q t
V t

dtout
out( )= ( ) .

In addition to urine, V tout ( )  and Q tout ( )  also include the 
creation of edema from the extravasation of plasma into the 
extravascular and interstitial spaces. Clinicians frequently refer 
to this phenomenon as “third spacing”. As will be shown later, 
the intravascular return of the interstitial or “third space” fluid 
can also be represented with this method.

In addition, this model allows for the simultaneous represen-
tation of both the creation of edema and the recruitment of 
edema. This occurs during both the infusion and the postinfusion 
periods. As stated, the recruitment of edema results from lym-
phatic drainage as well as direct transcapillary reflux. These can 
be modeled with Cl and/or A as negative values during the 
infusion period (see “Results”).

As previously stated, during the postinfusion period, Ri con-
tinues to have a positive value which subsequently represents 
the recruitment of edema, at a constant rate, which is indirectly 
dependent on PD status. This is in contradistinction to the 
value of Ri during the infusion period in which it represents the 
constant flow rate of IV fluid into the plasma. Furthermore, 
during the postinfusion period, coefficients Cl and/or A can 
also take on different values, irrespective of the value either had 
been during the infusion period.

Moreover, at t = 0 during the infusion period,

	 Vout 0 0( ) = 	 (7)

In addition, as illustrated in Figure 2,

	 pd pd t dt pd t dtdt
t t

0 0
0 0

( ) = ( ) = ( ) =∫ ∫∫= =
	 (8)

Plasma volume, as a function of time, is:

	 V t V t V t V V t Vin out( ) = ( ) − ( )( ) + = ( ) +0 0∆ 	 (9)

Consequently, the change in plasma volume as a function of 
time is:

	 ∆V t V t V V t V tin out( ) = ( ) − = ( ) − ( )0 	 (10)

Substitution yields the following:

Figure 1.  Conceptual diagram which illustrates pd(t) as well as its single 

and double indefinite integrals during the infusion process. When 

combined using coefficients Cl and A, these integrals model the volume 

of plasma cleared. Note how they mathematically “behave” relative to 

each other and to the plasma dilution function, pd(t). Furthermore, their 

respective flow rates can be subsequently represented, using their first 

derivatives with respect to time, as demonstrated in Figure 2. Figure 2.  Illustration of the flow rate into the plasma, Ri, and the two flow 

rates out of the plasma. Note that one flow rate out of the plasma is 

proportional to the plasma dilution function, pd(t), whereas another is 

proportional to its indefinite integral. Furthermore, Cl and/or A could have 

negative values which would represent additional flow, into the plasma, 

from both the direct and indirect recruitment of edema.

	 ∆V t V pd t R t Cl pd t dt A pd t dtdti( ) = ( ) = ⋅ ( ) + ⋅ ( )





⋅ ⋅ ∫ ∫∫0 − 	 (11)
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Q tout ( )  is then defined:

	 Q t Cl pd t A pd t dtout ( ) = ⋅ ( ) + ⋅ ( )∫ 	 (12)

Whereas Q tin ( )  is defined:

	 Q t Rin i( ) = 	 (13)

Using the time rate change of volume, the subsequent net 
flow, Q t( ) is: 

	 Q t V
d pd t

dt
Q t Q tin out( ) =

( )( )
= ( ) − ( )⋅0 	 (14)

By substitution,

	 Q t R d
dt

V t R Q ti out i out( ) = − ( )( ) = ( )− 	 (15)

Therefore,

	 Q t R Cl pd t A pd t dti( ) = − ⋅ ( ) − ⋅ ( )∫ 	 (16)

Note that Q(t) represents the net flow of fluid into and out of 
the plasma.

Development of the principle equation

The principle equation represents the overall characterization of 
PD and the associated physiologic properties which regulate it. 
This applies during both the infusion and postinfusion periods.

Dividing both sides of equation (11) by V0  yields the 
following:

	 pd t
V t
V V

R t Cl pd t dt A pd t dtdti( ) =
∆ ( )

= ⋅ ⋅ ⋅ ( ) + ⋅ ( )
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0 0

1
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Applying equation (4) and differentiating:
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Therefore, using equation (17):
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Rearranging equation (19) and solving for pd(t) yields the 
principle equation:

  pd t
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R V
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Using the principle equation, pd(t) can be represented as  
a linear first-order IDE having constant coefficients as well  
as three distinct components: constant ratio, differential, and 
integral:

	 pd t
R
Cl

V
Cl

d pd t
dt

A
Cl

pdi

constant
ratio

differential

( ) = − ⋅
( )( )

⋅0 − tt dt
integral

( )∫ 	 (21)

Algebraic rearrangement demonstrates that when pd(t) is 
added, to both the differential and integral components, the 
result is equal to the constant ratio component:

	 pd t
V
Cl

d pd t
dt

A
Cl

pd t dt
R
Cl

i( ) + ⋅
( )( )

+ ⋅ ( ) =∫0 	 (22)

Equation (22) further demonstrates the physiological 
process of autoregulation of PD, whereas Figure 3 illustrates 
the principle equation using a component-based block 
diagram.

The solution for the above principle equation, which repre-
sents pd t( )  during the infusion period, is readily determined 
using the Laplace transform technique (see Appendices 3 and 
4): 

	 pd t we bt Cl AVat( ) = ( ) −( ) >sinh 2
04 0 	 (23)

Where a Cl V= − / 2 0 , b Cl AV V= −( ) /.2
0

0 5
04 2 , and 

w R Cl AVi= −2 42
0

0 5/ ( ) . . Note that b and w are both real 
when ( )Cl AV2

04 0− > . In addition, a and b have the dimen-
sion of inverse time (min−1). Furthermore, Vo and Ri are always 
greater than zero. Moreover, w can be thought of as a dimen-
sionless “weighting factor.”

Application of Euler’s formula

It should be noted that in the special case of ( ) ,Cl AV2
04 0− <  

both b and w will have imaginary values. Specifically, 
b b i= | |  and w w i w i= = −| | | |/ . Thus, using the positive 
square root of its numerator, b will then be a positive 
imaginary number, whereas w will be a negative imagi-
nary number ( )i = −1 . The solution to the principle 
equation, during the infusion period, is subsequently 
expressed as: 
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	 pd t
w
i

e b i t Cl AVat( ) = ⋅( ) −( ) <sinh 2
04 0 	 (24)

Applying Euler’s formula, as demonstrated in  
Appendix 2, the above equation can then be represented as 
follows:12

	 pd t
w
i

e b i t
w
i

e i b t

w ie i b t Cl AV

at at

at

( ) = ⋅( ) = ( )
= − ( ) −

sinh sin

sin 2
04(( ) < 0

	 (25)

Thus,

	 pd t w e b t Cl AVat( ) = ( ) −( ) <sin 2
04 0 	 (26)

Note that − =i i1/ . Therefore, ( )( )− =i i 1 . As previously 
stated, in the case of ( )Cl AV2

04 0− > , both b and w will be 
positive real numbers. The model is not applicable in the case 
of ( )Cl AV2

04 0− = .

Development of a linear IDE model of PD during 
the postinfusion period

During the postinfusion period, the volume removed from the 
plasma can be defined in a likewise manner to that of the infu-
sion period. Note that R, Cl, and A have the same physical 
dimensions during both the initial infusion and the postinfu-
sion periods. However, their numerical values generally differ. 
For the purposes of this model, the postinfusion equilibration 
period “re-starts” at t = 0. Vout(t) is therefore: 

Figure 3.  The principle equation can be represented as a combination of 

three components which control or regulate pd(t): constant ratio, 

differential, and integral. This applies to both the infusion period and the 

postinfusion period.  Positive influence.  Negative influence. 

 Feedback.  Indirect influence.  Result. Note that the indirect 

influence of pd(t) on Ri applies only during the postinfusion period.

	 V t Cl pd t dt A pd t dtdtout ( ) = ⋅ ( ) + ⋅ ( )∫ ∫∫ 	 (27)

The PD function, pd(t), is also derived using a similar method 
as that of the infusion period. Subsequently, an identical principle 
equation, as the one used for the infusion period, can be applied:

	 pd t
R
Cl

V
Cl

d pd t
dt

A
Cl

pdi

constant
ratio

differential

( ) = − ⋅
( )( )

− ⋅0 tt dt
integral

( )∫ 	 (28)

Therefore, a “three-component” model is again used. Note 
that during the postinfusion period, Ri > 0  as some edema 
fluid is still “returning” to the intravascular space at an assumed 
constant rate, indirectly dependent of the PD status (see 
“Results”).

The Laplace transform of equation (28) is thus indistin-
guishable, in form, to that of the infusion period:10

PD s

R
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i
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−
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
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


 ( ) − ( )  − ( )0 0 	 (29)

Solving for PD(s) with algebraic rearrangement yields (see 
Appendix 4):
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	 (30)

Thus, it becomes obvious that the postinfusion solution is a 
combination incorporating that of an infusion component with 
a nonzero initial condition component. Equation (30) also 
demonstrates that both components share a common denomi-
nator, within the Laplace domain.

As previously stated, the initial condition component is 
equal to zero during the infusion period (during the postinfu-
sion equilibration period, pd ( )0 0> , whereas during the infu-
sion period, pd ( )0 0= ). Furthermore, pd(0) for the postinfusion 
period is equivalent to the final value, pd(30), of the infusion 
period. Consequently, pd(0) for the postinfusion period is 
always greater than zero.

Thus, the inverse Laplace transform10 of equation (30) can 
be thought of as the general solution for both the infusion and 
the postinfusion periods (see Appendix 4):

	 pd t w e bt pd e a
b

at
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at( ) = ⋅ ( ) + ( ) 




sinh
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0

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



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sinh coshbt bt

initial condition
component

� �������� ��������
	 (31)
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where a Cl V= − / 2 0 , b Cl AV V= ( ) /.2
0

0 5
04 2− , and 

w R Cl AVi= −2 42
0

0 5/ ( ) . . Therefore, coefficients a, b, and w 
have the same dimensions and mathematical form as they had 
during the infusion period. However, they will most likely have 
different numerical values postinfusion (see “Results”).

PD as a two-component model using a 
biexponential equation

Equation (31) for pd t( )  can be algebraically expressed as (see 
Appendix 2):

	 pd t w a
b

pd e e e pd eat
bt bt

at( ) = +
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
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−

2
	 (32)

The following dimensionless coefficients can then be 
defined:
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b
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
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Substitution and rearrangement yields:

	 pd t K e K e K e K ea b t a b t a b t a b t( ) = − + ++( ) −( ) +( ) −( )
1 1 2 2

	 (34)

With further rearrangement, a biexponential function results: 

	
d pd t

dt
K K a b e K K a b ea b t a b t( )( )

= +  +( ) − −  −( )+( ) −( )
1 2 1 2

	 (36)
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bb t
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Note that this biexponential equation (35) can also be 
thought of as having a component structure. Using its 
straightforward form, it can be easily employed to numeri-
cally verify the curve fitting process, the principle equation, 
and the Laplace-based solution to the principle equation. 
These can be readily accomplished, using equation (35), by 
determining both the first derivative and the indefinite inte-
gral of pd(t):

and

pt t dt
K K

a b
e

K K
a b

e Ca b t a b t( ) =
+ 
+( )

−
− 
−( )

+∫ +( ) −( )1 2 1 2 	 (37)

where C K K a b K K a b= − + + + − −[ ] / ( ) [ ] / ( )1 2 1 2  so that:

	 pd t dt
t

( ) =∫ =0
0 	 (38)

Unlike traditional biexponential pharmacologic models, 
( )a b+  and ( )a b−  can each have an independent numerically 
positive, or negative, real value. Furthermore, ( )a b+  and 
( )a b−  can be complex numbers, with a and b having nonzero 
real and imaginary values, respectively.

Finally, based on the clinical data of this study, K1 can have 
either a nonzero real or imaginary value, whereas K 2 0≥ and 
can only have a real value (see “Results”).

Materials and Methods
Retrospective data acquisition

Data for this analysis were obtained retrospectively from an 
institutional review board (IRB)–approved previously published 

study.11 Additional IRB approval was further obtained at each 
authors’ institution for the analysis presented in this article. The 
authors have no direct or indirect financial interest in any prod-
uct or business entity mentioned in this study. Furthermore, the 
specific details of the initial study are public domain and can be 
readily obtained.

To summarize the data collection process, 30 patients who 
had given their informed consent were randomized to receive 
either an IV hypnotic (propofol) or an inhalational anesthetic 
(isoflurane). Both techniques were supplemented with an opi-
ate (fentanyl) and a muscle relaxant (rocuronium). All patients 
were scheduled for elective thyroid surgery. One patient, within 
the IV anesthetic group, was removed from the analysis due to 
excessive intraoperative blood loss. Table 1 summarizes the 
available demographic data for the study.

Following the induction of general endotracheal anesthesia, 
patients received 25 mg/kg of IV crystalloid (Ringer’s acetate 
solution) over 30 minutes. No additional IV fluid was adminis-
tered while the patients were anesthetized. Furthermore, sepa-
rate IV access was used to obtain and assess each patient’s 
sequential Hb measurements. This was done to avoid “false 
hemodilution” which could occur from obtaining the blood 
samples using the same site as that of the administered IV 
fluid. Moreover, each sample consisted of 2.5 mL of blood.
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Table 1.  Demographic data for all patients.

No. of 
patients

Female, 
%

Age, Yrs Weight, kg Height, cm Predicted 
plasma 
volume, mL

Iso, TIVA, 
%

All patients 29 82.76 53.14 (15.54) 68.10 (10.71) 167.31 (8.79) 2524.97 (337.46) 51.72, 48.2

“Iso” refers to the inhalational general anesthetic agent isoflurane, whereas “TIVA” refers to total intravenous anesthesia. Where appropriate, values 
are expressed as a mean with their associated standard deviations in parenthesis.

Data Analysis
Each patient’s predicted plasma volume was determined using 
standard well-established formulas.18 This value, V0 , then 
served as their initial volume status, prior to receiving anesthe-
sia, surgery, or IV fluid:

	 V BSA for men0 1578= ⋅( ) 	 (39)

	 V BSA for women0 1395= ⋅( ) 	 (40)

where BSA is the body surface area in square meters:

	 BSA W Hkg cm= ( ) ⋅⋅0 425 0 725 0 007184. . . 	 (41)

Specifically, Wkg  is each patient’s weight in kilograms, whereas 
H cm  is their height in centimeters.19 Note that this calculated 
value for V0  does not take into account the effects of preoperative 
fasting on patients’ plasma volume.

After measuring sequential Hb values and each patient’s 
initial hematocrit ( )Hct0 , corresponding PD values were then 
determined (see Appendix 1).

Curve fitting was subsequently performed using a “sum of 
the square error” Levenberg-Marquardt algorithm with 
Mathcad (PTC Corp., Needham, MA, USA) to determine 
patient-specific values for Cl and A during the infusion 
period.20 Equation (23) was used for this. Note that during the 
infusion period, the value used for Ri corresponded to each 
patient’s infusion rate of IV fluid in mL/min.

Using equation (31), this same curve fitting algorithm was 
also employed to determine separate patient-specific values for 
Ri, Cl, and A during the postinfusion period. Note that pd(0) 
during the postinfusion period corresponded to each patient’s 
pd(30) value during their respective infusion period.

For curve fitting the postinfusion data, the “seed values” for 
both Cl and A used their respective patient-specific values 
which were obtained from the prior analysis of each individu-
al’s infusion period.

A seed value for Ri of 25 mL/min was also used for curve 
fitting during the postinfusion period. However, a trial of dif-
ferent seed values for Ri subsequently yielded different values 
for both Cl and A. Nonetheless, the mathematical processes 
which were used resulted in realistic group-based mean values 
for Ri, Cl, and A and uniformly low patient-specific errors dur-
ing the postinfusion period (see “Discussion”).

Consequently, a, b, and w were then determined, for both 
periods, from calculations which incorporated V0, Ri, Cl, and A 
(see Appendices 3 and 4).

Following the curve fitting processes for each patient, the 
AUC was determined using numerical integration with 
Mathcad. As before, this process was done separately for each 
individual’s infusion and postinfusion periods. Note that AUC 
has dimensions of time (minutes).

Preliminary statistical assessment and charting used Excel 
(Microsoft Corp., Redmond, WA, USA). Where appropriate, 
a two-tailed Wilcoxon rank sum test was employed for the 
analysis of unpaired data, whereas a two-tailed Wilcoxon 
signed rank test was used for the examination of paired data.  
Fisher’s exact test was also used for the analysis of categorical 
data. These additional statistical analyses were accomplished 
using XLSTAT (Addinsoft, New York, USA). Note that the 
Wilcoxon tests are nonparametric and are appropriate for this 
analysis, given the small sample size and that the data are not 
normally distributed.

Statistical significance was defined as P < .05. In addition, 
it should be noted that several comparisons approached statis-
tical significance such that . .05 2≤ <P  and are also presented 
(see “Results”). Furthermore, error is reported as mean squared 
error.

Results
Examination of clinically-obtained human data

Figures 4 and 5 illustrate the average PD response, for all 
patients, at each point in time. The start of an obvious ceiling 
or saturation-like effect can be noticed during the latter 
aspect of the infusion period. This occurred at a mean PD 
value corresponding to approximately 0.3 or 30%. Following 
the cessation of the infusion, the mean PD quickly decreased 
to a value of roughly 0.15 or 15%. Note that the postinfusion 
period is characterized by an initial rapid diminution in PD 
which is subsequently followed by a slower rate. 
Pharmacologically, these would correspond to distribution and 
elimination phases, respectively.

Properties of Group 1 and Group 2 patients

After curve fitting each individual’s PD values during the infusion 
period, patients were subsequently categorized into two distinct 
groups: Group 1 patients had values such that ( )Cl AV2

04 0− > , 
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Table 2.  Group 1 and Group 2 are distinguished based on the values of coefficients b and w being either both real or both 
imaginary during the infusion period.

Infusion Postinfusion

Group 1 ( )Cl AV2
04 0− > b and w both real

( )Cl AV2
04 0− > b and w both real

Group 2 ( )Cl AV2
04 0− < b and w both imaginary

Figure 4.  Infusion and postinfusion periods were sequential events. 

Specifically, the infusion period occurred during the first 30 minutes of 

surgery. Subsequently, the postinfusion period was from 30 minutes until 

150 minutes. Data points represent the mean values, at each point in 

time, for the entire 29 patients.

Figure 5.  For modeling purposes, the infusion and postinfusion periods 

were separated into two distinct time-based entities. Note that pd(0) = 0 

for the infusion period, whereas pd(0), for the postinfusion period, 

corresponded to the final value, pd(30), of the infusion period (note the 

blue arrows). Furthermore, the start of a saturation-like effect can be 

observed during the infusion period, whereas distribution and elimination 

phases are visible during postinfusion.

whereas Group 2 patients had values consistent with 
( )Cl AV2

04 0− < . Table 2 summarizes this for both groups. 
Table 3 also reiterates the solution to the principle equation which 
was used for each group during the process of curve fitting.

Table 2 therefore illustrates the how Group 1 and Group 2 
are distinguished on the basis of coefficients b and w being 
either both real or both imaginary during the infusion period. 
This resulted in Group 2 having a different form, of the solution to 
the principle equation, during the infusion period (see Table 3 and 
Appendix 2).

Table 4 separates the original demographic data, from Table 
1, based on each patient’s respective group. Note that Group 1 
patients had heights which were taller and associated BSAs 
which were also greater. Consequently, predicted plasma vol-
umes were larger as well. However, these differences only 
approached statistical significance. It should also be noted that 
body mass index (BMI) was similar between both groups. 
Where BMI is defined:21

	 BMI
W

H
=
( )( )−

kg

cm10 4 2 	 (42)

Note that BMI has units of kg/m2. Prior to the induction of 
general anesthesia, both groups had vital signs which were sta-
tistically similar (see Table 5). It should be noted that the 
infused absolute volume of crystalloid was less for Group 2 
patients. However, this difference also only approached statisti-
cal significance. Nonetheless the infused volume, per kg of total 
body weight (25 mg/kg), was identical for both groups (see 
Table 5 and “Materials and methods”).

Clinical and pharmacologic aspects of the IDE 
model during the infusion period

Table 6 summarizes the differences between the two groups 
following curve fitting of each patient’s PD responses.

During the infusion period, Group 2 patients had a sig-
nificantly greater AUC than those of Group 1. This implies 
that Group 2 patients may have had a lower initial plasma 
volume (reduced hydration status) than what may have 
been predicted. In addition, Group 1 patients had a signifi-
cantly greater mean value for Cl than those of Group 2. 
Furthermore, Group 1 patients had an average value for A 
which was negative, whereas Group 2 had an average value 
for A which was positive.

Thus, Group 1 patients may have generated more edema, 
as well as recruited more edema, when compared with those 
patients from Group 2. This is clinically consistent with 
Group 1 patients having had a greater initial hydration status 
than Group 2.
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Table 3.  The form of the solution to the principle equation, for Group 2 during the infusion period, employs Euler’s formula and 
results in an exponentially decaying trigonometric sine function.

Infusion Postinfusion

Group 1 pd t we btat( ) = ( )sinh
pd t we bt pd e

a
b

bt btat at( ) = ( ) + ( ) 







 ( ) + ( )







sinh sinh cosh0 

Group 2 pd t w e b tat( ) = ( )sin

This is in contradistinction to an exponentially decaying hyperbolic sine function which is used for the solution to the principle equation for Group 1 
during the infusion period (see Appendix 2). Nonetheless, both groups have solutions, which are similar in mathematical form, for their postinfusion 
periods.

Table 4.  Analysis of demographic data following Group 1 and Group 2 patient categorization.

No. of 
patients

Female, 
%

Age, Yrs Weight, 
kg

Heighta, 
cm

Predicted 
plasma 
volumea, mL

Iso, 
TIVA, %

BSAa, m2 BMI, kg/m2

Group 1 19 78.90 51.63 (15.03) 70.08 (11.73) 169.47 (8.17) 2592.84 (365.13) 53.6, 47.4 1.80 (0.179) 24.29 (2.70)

Group 2 10 90 56.00 (16.90) 64.35 (7.59) 163.20 (8.83) 2396.0 (243.82) 50, 50 1.69 (0.123) 24.30 (3.59)

Abbreviations: BMI, body mass index; BSA, body surface area; Iso, isoflurane; TIVA, total intravenous anesthesia.
Where appropriate, values are expressed as a mean with their associated standard deviations in parenthesis.
aValues approached statistical significance . .05 2≤ <P  but did not attain statistical significance.

Table 5.  Infused IV fluid volume, urine output, and hemodynamic parameters for both groups before the induction of general 
anesthesia.

Infused IV 
volumea 
mL

Infused 
volume, 
mL/kg

Urine 
volume, 
mL

Urine  
FLOW 
mL/kg/hr

MAP SBP DBP PP HR

Group 1 1763 (296) 25.17 (0.76) 200 (159) 1.15 (0.89) 105 (12.7) 140 (16.1) 87 (11.97) 53 (13.9) 75.84 (8.81)

Group 2 1583 (220) 24.58 (1.32) 229 (191) 1.37 (1.03) 106 (18.4) 139.7 (27.50) 84 (9.1) 55 (21) 76.45 (13.39)

Abbreviation: IV, intravenous.
MAP, SBP, DBP, and PP refer to mean arterial, systolic, diastolic, and pulse pressures in millimeters of mercury, whereas volumes are in milliliters. 
Values are presented as a mean with their associated standard deviations in parenthesis.
aValues approached statistical significance . .05 2≤ <P  but did not attain statistical significance.

As stated, the differences between patient-specific values for 
Cl and A during the infusion period lead to the division of the 
patients into the two distinct groups, with b and w being either 
both real or both imaginary.

Clinical and pharmacologic aspects of the IDE 
model during the postinfusion period

Postinfusion, Group 2 patients continued to have a statistically 
greater AUC for their PD responses than those of Group 1. 
Furthermore, the initial value, pd(0), was also greater for Group 
2 patients as compared with those of Group 1. Because less 
edema was assumably generated by Group 2 during the infu-
sion period, less edema was consequently recruited. Thus, Ri, 
Cl, and A remained higher for Group 1 patients, postinfusion, 
as compared with Group 2 patients.

Recruitment of edema may be both directly and 
indirectly dependent on PD status

Examination of Group 1, during the infusion period, demon-
strates that the recruitment of edema may be occurring at a rate 
which is negatively proportional to the AUC of PD (see Table 
6). This is modeled as coefficient A having a negative value.

Note that during the postinfusion period, both Group 1 and 
Group 2 had values of Ri which were numerically positive. This 
denotes the recruitment of edema at an average constant rate. 
In addition, observation of the postinfusion values for Ri with 
respect to AUC, Cl, and A illustrates the probable indirect 
dependence of Ri on PD status (see Figure 3 and Table 6):

	 R
AUCi ∝ ( )
1

	 (43)
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	 R Cli ∝ 	 (44)

	 R Ai ∝ 	 (45)

where ∝  represents an observed approximate proportionality 
based on the pooled data. Furthermore, Ri approached statisti-
cally different values, postinfusion, for both groups.

The generation of edema appears to be dependent on 
PD status

Using Table 6, inspection of coefficient Cl demonstrates that 
the generation of edema is most likely dependent on PD status. 
In addition, the value of Cl was statistically different between 
groups, for both the infusion and postinfusion periods.

As Group 1 patients were presumably more hydrated than 
those of Group 2, these patients probably generated more 
edema than those of Group 2. Despite this, overall urine pro-
duction was statistically similar when examining both groups 
(see Table 5).

Postinfusion, coefficient A further demonstrated that the 
production of edema appeared to be inversely proportional to 
the AUC of PD, with Group 2 patients having had a statisti-
cally smaller value for A as compared with those of Group 1. 
This is consistent with Group 2 patients being less hydrated 
than those of Group 1, as AUC was greater for Group 2 
patients during both the infusion and postinfusion periods.

The initial value for the postinfusion period and 
AUC

During the postinfusion period, pd(0) was significantly greater 
for Group 2 patients as compared with those of Group 1. This 
is also “supportive” of Group 2 patients having a greater AUC 
during both the infusion and postinfusion periods as follows:

	 pd pd
infusion postinfusion

30 0( ) = ( )��� �� ��� 	 (46)

It should be noted that pd(0) for the postinfusion period 
and AUC for both the infusion and postinfusion periods are 
“model independent.” Thus, neither of these values would be 
significantly different had alternative patient-specific curve-
fitted modeling schemes been used.

Model adaptability and goodness-of-fit

The ability of the IDE model to change or “adapt” from that of 
an exponentially decaying hyperbolic sine function, to that of 
an exponentially decaying trigonometric sine function, is 
extremely useful when one examines the tremendous patient-
to-patient variation which is clinically encountered throughout 
the time course of PD.

Figure 6 further illustrates the benefit of the “adaptive” 
nature of this model. This occurred primarily from coefficients 
b and w being either both real or both imaginary. Thus, during 
the infusion period, the model had polynomial, limiting, or 
sinusoid-like properties. Consequently, there was a considera-
ble reduction in patient-specific model-related error.

The IDE model also used its “adaptive behavior” during the 
postinfusion period. Thus, slowly decreasing, rapidly decreas-
ing, and parabolic-like PD responses were represented after the 
cessation of the infusion of crystalloid. These are illustrated in 
Figure 7. Note that postinfusion, b and w were both real. 
Nonetheless, a wide range of positive and negative values, for 
Cl and A, also contributed to patient-specific adaptability dur-
ing both the infusion and postinfusion periods. Postinfusion, Ri 
similarly exhibited a wide range of values. However, these were 
consistently positive (see Table 6).

Figures 8 and 9 illustrate the goodness-of-fit analysis, for 
the infusion and postinfusion periods, for both groups. Note 
that linear regression is used to statistically assess the corre-
lation coefficient (R2) of the measured PD data points to 
their corresponding IDE-based calculated PD values. These 
high R2 values, which are greater than 0.93, further demon-
strate the overall adaptive nature of this patient-specific 
modeling scheme.

Note that the residual plots represent the difference 
between each measured PD data point and its associated cal-
culated value. Examination of these graphs illustrate that 
model-generated error is approximately evenly distributed, 
both above and below zero.

Discussion
The clinical importance of VK

Intravenous fluid resuscitation is an essential component of 
hospital-based patient care and can have a potentially signifi-
cant therapeutic benefit as well as an associated morbidity and 
mortality. In recent years, adverse effects caused by both over 
and under hydration have also been increasingly acknowl-
edged.22,23 Consequently, judicious use of IV fluids is depend-
ent on the understanding of VK and on PD. Of note, during 
clinical volume resuscitation, PD is often referred to as plasma 
volume expansion.

In addition, the intricate physiologic mechanisms the 
human body uses for fluid homeostasis must be thoroughly 
understood. Furthermore, the alteration of these mechanisms 
in the presence of disease, surgery, and anesthesia must also be 
fully appreciated, by both clinicians and researchers.

Physiologic aspects of VK and PD

Safe and effective use of IV fluids results in PD. This process 
therefore requires an understanding of VK, which is the physi-
ologic response to the administration of crystalloids and 
colloids.
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Figure 6.  The above patient responses, to plasma dilution, illustrate the adaptive nature of the integro-differential equation model during the infusion 

period. Note how it can individually curve fit data with limiting, sinusoidal, or polynomial characteristics. Furthermore, patient 24 had a solution which used 

a Group 1 form, whereas patients 7 and 23 both had solutions which used a Group 2 form.

Figure 7.  The adaptability of the integro-differential equation model is further illustrated with slowly diminishing, rapidly diminishing, and parabolic plasma 

dilution responses during the postinfusion period. In addition, based on curve fitting during the infusion period, patients 4 and 12 were categorized as 

Group 1, whereas patient 16 was categorized as Group 2.
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Figure 8.  Goodness-of-fit and residual analysis for Group 1 and Group 2 during the infusion period.

Figure 9.  Goodness-of-fit and residual analysis for Group 1 and Group 2 during the postinfusion period.
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Water makes up approximately 60% of total human body 
weight. In a healthy individual, two-thirds of this water will 
be contained within cells and is collectively described as the 
intracellular compartment, whereas the extracellular com-
partment is subdivided into intravascular and interstitial 
compartments. Subsequent movement of fluids, between the 
intravascular and interstitial compartments, is determined by 
two types of pressure: oncotic and hydrostatic. The balance 
between them is referred to as “Starling hypothesis” and is the 
classic description of the fluid filtration process which occurs 
across capillary membranes.17

Nonetheless, more recent research into the function of the 
glycocalyx of the capillary membrane may modify the long-
standing theory of Starling. Thus, newer theories of transmem-
brane fluid shifts take into account the potential influence of 
the extracellular matrix, the basement membrane, and the 
endothelial glycocalyx layer. The oncotic pressure across the 
glycocalyx layer, which is a regulator of vascular permeability, is 
now believed to possibly oppose rather than reverse the filtra-
tion rate, consequently creating a “no-absorption rule.” This 
implies that colloids may have less of an effect when used for 
the treatment of edema in the setting of low capillary pressure. 
Therefore, crystalloids have been hypothesized as potentially 
being more beneficial for volume management.24

However, recent clinical research supports the use of col-
loids for hypovolemic shock and “massive” resuscitation.7,8 In 
addition, EDM-guided fluid administration, with colloids, 
appears to shorten the length of hospital stay and is also associ-
ated with a statistically significant reduction in morbidities 
related to fluid management.3,25,26

Regulation of intravascular and extravascular body 
fluids

Volume kinetics and PD “reveal” the body’s overall physiologic 
response with respect to the fluid regulatory mechanisms: the 
neuroendocrine, renal, cardiovascular, and lymphatic systems. 
These control plasma volume homeostasis through their effect 
on capillary permeability, urine production, lymphatic trans-
port, and osmotic pressure. Those hormones which play a piv-
otal role in this include the following: ADH, atrial natriuretic 
peptide (ANP), and the renin, angiotensin, and aldosterone 
system (RAAS).17

Dysregulation and intervention

Certain conditions, such as hypovolemic shock, can pro-
foundly affect the fluid regulatory mechanisms. Consequently, 
in this specific pathologic state, there would be a marked 
decrease in the release of brain natriuretic peptides, which 
have similar effects as ANP. Under this circumstance, the 
RAAS is also activated, resulting in both sodium and intra-
vascular fluid retention. When these occur, there is an altera-
tion in the fluid compartments. This is produced by a fluid 

shift with the net movement of water from the extravascular 
to the intravascular compartment.25

This fluid shift occurs through changes in hydrostatic and/
or osmotic pressure gradients, both of which control intravas-
cular volume status. The net effect of this can be measured 
through the analyses of PD.1,9,25 Urine output and patient 
weight can also be used in assessing volume status.14–16 
Furthermore, intravascular volume can be readily monitored 
with an EDM or other modalities.6,27,28

In addition to the normal function of the fluid regulatory 
mechanisms given above, and their disruption by disease states, 
exogenous perioperative IV fluids will also affect plasma 
osmotic pressure, and possibly osmosis, resulting in fluid shifts. 
Physiologic changes due to surgical stress and general anesthe-
sia may also produce additional fluid shifts which need to be 
accounted for to prevent morbidity and mortality during the 
perioperative resuscitation process.25–28

Anesthesia

Patients receiving outpatient and “same-day” anesthesia are 
somewhat dehydrated because they are required to abstain 
from oral clear fluid intake for at least two hours prior to 
receiving anesthesia. Historically, surgical patients were 
instructed, “nothing after midnight.” This frequently put 
patients into a hypovolemic state and resulted in a reduced 
hydrostatic plasma pressure. Consequently, significant fluid 
shifts were triggered.25,27

General anesthesia, which is usually associated with both 
myocardial depression and vasodilation, also affects the fluid 
regulatory processes. It should be noted that a drop in hydro-
static pressure activates the RAAS with the subsequent promo-
tion of fluid retention. This results in reduced urine output and 
a reduction in the elimination clearance of IV fluid.17,25 These 
effects have been demonstrated during abdominal, laparo-
scopic, and thyroid surgery.11,29,30

Experimental subjects, who received isoflurane without sur-
gery, showed a 50% reduction in elimination clearance of 0.9% 
normal saline. Furthermore, this was associated with an 
expected increase in both renin and aldosterone levels.31

Infusion models as tools: Pharmacokinetic theory 
and PD

Plasma dilution models incorporate pharmacokinetic theory. 
Intravenous colloids are fluids which remain in one compart-
ment, the intravascular space, and are subsequently described 
by a one-compartment model, whereas crystalloids are fluids 
which distribute between the intravascular and interstitial 
spaces can be described using a two-compartment model.32–34

It should be noted that a traditional two-compartment model 
allows for the mathematical representation of both the formation 
of edema, as well as the simultaneous recruitment of edema, and 
the total clearance of the IV-administered crystalloid.11,30–32
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As demonstrated, the aforementioned processes appear to 
occur at different patient-specific rates and may also depend on 
individual’s initial hydration status. These phenomena would 
explain the observed variability in the PD response.

Consequently, patient-specific adaptability is essential 
to infusion kinetic modeling. Fluid homeostatic mecha-
nisms are either triggered or suppressed depending on the 
volume status of the individual. Retrospective application 
of our component-based PD model to these data, from a 
study of humans receiving concomitant thyroid surgery and 
anesthesia, has successfully demonstrated the utility of 
patient-specific adaptability.

This component-based model also retains the ability to rep-
resent the simultaneous generation of edema as well as the 
recruitment of edema. Therefore, Group 1, during the infusion 
period, had both a greater value for Cl and a negative value for 
A as compared with Group 2. This is consistent with Group 2 
having an increased AUC and thus being relatively hypov-
olemic with respect to Group 1.

In addition, during the postinfusion period, Group 1 con-
tinued to have greater values for both Cl and A as compared 
with Group 2. Moreover, the AUC during the postinfusion 
period remained greater for Group 2 as compared with 
Group 1. Thus, Group 2 patients retained their hypovolemic 
characteristics during the postinfusion period. Furthermore, 
Ri was also greater for Group 1 postinfusion as compared 
with Group 2.

Consequently, the autoregulation process, which has been 
modeled using an IDE, can be loosely summarized in a 
straightforward manner. Those patients who generated more 
edema subsequently recruited more edema. Conversely, those patients 
who generated less edema recruited less edema. This was observed 

for the two patient groups, during both the infusion and 
postinfusion periods.

In addition, the use of Euler’s formula, with coefficients b 
and w being either both real or both imaginary, identified a 
subset of patients who, most likely, were relatively hypovolemic 
throughout both the infusion and postinfusion periods. Thus, 
Euler’s formula allowed the model to adapt to diverse patient-
specific PD responses.

Finally, patient-specific adaptability was further “enhanced” 
by the relatively disparate positive and negative values, for Cl 
and A, during both the infusion and postinfusion periods as 
well as the wide range of positive values, for Ri, postinfusion.

Conclusions
Our newly developed IDE model of PD has demonstrated 
adaptability in describing patient-specific pharmacokinetic 
responses throughout both the crystalloid infusion period and 
the postinfusion period. This has been applied to human sub-
jects simultaneously receiving anesthesia and surgery. This 
adaptability primarily arose from the application of Euler’s  
formula to the IDE solution. Using this mathematical iden-
tity, a clear distinction was found which allowed for the sepa-
ration of the patients into two discrete groups. Specifically, 
this categorization was most likely based on patients’ initial 
volume status and the subsequent differences in the produc-
tion and recruitment of edema. Furthermore, each group had 
unique pharmacokinetic responses with the most significant 
difference being the AUC. The present patient-specific IDE 
model of PD may become a useful tool in perioperative fluid 
management with the potential to assess real-time clinical 
VK of crystalloid solutions. Moreover, this model may be 
applicable to colloid-based infusion therapy as well.

Notations

Abbreviation Term Equation(s) Units

a Coefficient A20, A21 (min)−1

A Coefficient 6 mL/(min)2

b Coefficient A24 (min)−1

C Constant of integration 37, 38 minutes

Cl Coefficient 6 mL/min

cos Trigonometric cosine function A14  

cosh Hyperbolic cosine function A8  

Hb Hemoglobin g/dL

Hcm Height 41, 42 cm

Hct0 Initial hematocrit A1 %

i −1 A9, A15 Dimensionless

 (Continued)
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Abbreviation Term Equation(s) Units

K1 Coefficient 33-38 Dimensionless

K2 Coefficient 33-38 Dimensionless

p Statistical significance  

PD(s) Plasma dilution function within the Laplace domain  

pd(t) Time-dependent plasma dilution function Dimensionless

Q(t) Time-dependent net flow rate of plasma volume 4 mL/min

Qin(t) Time-dependent flow into plasma 13 mL/min

Qout(t) Time-dependent flow out of plasma 12 mL/min

R2 Correlation coefficient Dimensionless

Ri Constant flow rate into plasma 5 mL/min

s Laplace domain Complex frequency

sin Trigonometric sine function A15  

sinh Hyperbolic sine function A7  

t Time minutes

μ Dummy variable 1, 5 Dimensionless

V0 Initial plasma volume 1, 39, 40 mL

Vin(t) Time-dependent volume into plasma 5 mL

Vout(t) Time-dependent volume out of plasma 6 mL

V(t) Time-dependent plasma volume 1 mL

∆V(t) Time-dependent change in V(t) 1, 10 mL

w Coefficient A26 Dimensionless

Wkg Weight 41, 42 kg
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Appendix 1
Derivation of pd Hbi( )
Using conservation of red cell mass:

	 Hb V Hb V V Hct ii i0 0 0 01 0 1 2⋅ ⋅= + −( )  = …∆ , , 	 (A1)

where Hb0 and Hbi represent the initial and ith serially obtained 
Hb measurements, respectively. Note that V0 is the initial 
plasma volume. The term ∆ −⋅V Hcti ( )1 0  is the change in 
plasma volume corresponding to each Hbi measurement. 
Furthermore, using Hct0 , it also includes a “correction” for that 
portion of plasma volume which is “taken up” by red cell vol-
ume.35 Moreover, Hct0  is a dimensionless term and corre-
sponds to each patient’s initial hematocrit.

Dividing both sides of equation (A1) by Hbi,

	
Hb V Hb V

Hb
V Hct i

i

i
i

0 0 0

01 0 1 2
⋅ ⋅

⋅
( )−( )

= −( ) = …∆ , , 	 (A2)

Subsequent rearrangement yields:

	
V Hb Hb

Hb Hct
V i

i

i

i

0 0

01
0 1 2

−( )
−( )

= = …
⋅

∆ , , 	 (A3)

Dividing equation (A3) by V0  results in the definition of PD:

Hb Hb

Hb Hct
V

V
pd Hb pd t i

i

i

i
i i

0

0 01
0 1 2

−( )
−( )

= = ( ) = ( ) = …
⋅

∆
, ,   (A4)

Equation (A4) can be further simplified and expressed  
as:

	 pd Hb
Hb Hb

Hct
ii

i
( ) =

( )−
−( )

= …
⋅ −

0
1

0

1

1
0 1 2, , 	 (A5)

During the process of the administration of IV fluid, the 
patient’s Hb will usually tend to progressively decrease. Clinically, 
this phenomenon is referred to as hemodilution. Therefore:

	 Hb Hb Hb i0 1 2 0 1 2> > … = …, , 	 (A6)

Appendix 2
The hyperbolic sine and cosine functions: sinh and 
cosh

The hyperbolic sine and cosine functions are defined as:12

	 sinh x
e ex x

( ) =
− −

2
	 (A7)

and

	 cosh x
e ex x

( ) =
+ −

2
	 (A8)

A graph of both functions is shown in Figure A1.
Euler’s formula can be used to define those values of the 

sinh and cosh functions which are based on imaginary argu-
ments. It is a representation of complex numbers which exist on 
the circumference of a unit circle that lies within a complex 
plane. Thus, Euler’s formula is a combination of both real and 
imaginary trigonometric sine and cosine functions:

	 e x i xxi = ( ) + ( )cos sin 	 (A9)

Moreover, because the cosine function is even and the sine 
function is odd:

	 e x i xxi− = ( ) − ( )cos sin 	 (A10)

Addition of equations (A9) to (A10), with division by 2, 
yields:

	 cosh cosxi
e e

x
xi xi

( ) =
+

= ( )
−

2
	 (A11)
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Figure A1.  Graph of sinh and cosh. Note that cosh is an even function, whereas sinh is odd. Furthermore, sinh and cosh are approximately equal for 

large values of x.

Whereas subtracting equation (A10) from equation (A9), 
again with division by 2, yields:

	 sinh sinxi
e e

i x
xi xi

( ) =
−

= ( )
−

2
	 (A12)

Thus, for imaginary arguments, the hyperbolic functions, 
sinh and cosh, can then be related to circular (trigonometric) 
functions:

	 sinh sinxi i x( ) = ( ) 	 (A13)

and

	 cosh cosxi x( ) = ( ) 	 (A14)

Finally, division of equation (A12) by i results in:

	 sinh
sin

xi
i

e e

i
x

xi xi( )
=

−
= ( )

−

2
	 (A15)

Thus, inspection of equations (A11) and (A15) demon-
strates that the trigonometric sine and cosine functions can be 
expressed as biexponential equations.

Appendix 3
The Laplace transform solution for pd(t) during the 
infusion period

Reiterating, the derived time-domain first-order linear inte-
gro-differential equation (principle equation) during the infu-
sion period is:

pd t
Cl

R V
d pd t

dt
A pd t dti( ) = −

( )( )












− ⋅ ( )















⋅ ∫
1

0 	 (A16)

The notation for Laplace transform analysis is:10

	 pd t PD s( )( ) = ( ) 	 (A17)

where s represents the complex frequency domain. Using stand-
ard Laplace transform techniques,10 equation (A16) is conse-
quently expressed as:

PD s

R
Cl
s

V
Cl

sPD s pd A
Cls

PD s

i

( ) =









−








 ( ) − ( )  − ( )0 0

	
(A18)

During the infusion period, it should be noted that 
pd ( )0 0= . Solving the above for PD(s):

	 PD s

R
Cl

V
Cl

s s A
Cl
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0 2

	 (A19)

The following Laplace transform is subsequently used:10

w e bt w b
s a b

w b
s as a b

at⋅ ( )( ) = ⋅

−( ) −
=

⋅
− + −

sinh
2 2 2 2 22   (A20)

Multiplying the numerator and denominator of equation 
(A19) by Cl V/ 0  yields:

	 PD s

R
V

s Cl
V

s A
V

i
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0 0

	 (A21)

L

L
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By inspection of equations (A20) and (A21), a Cl V= − / 2 0 . 
Therefore, by further inspection of equations (A20) and (A21):

	 a b A
V

2 2

0

− = 	 (A22)

The following relationship is then established:
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	 (A23)

Solving for b:

	
b

Cl AV

V
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−( )2
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	 (A24)

In addition, by again inspecting equations (A20) and (A21):

	 wb
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Substitution and algebraic rearrangement yields:
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For Group 1, the final expression for pd(t) during the infusion period is:
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Whereas for Group 2, the final expression for pd(t) during the infusion period is:
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Note that both a and b have dimensions of inverse time, whereas w is dimensionless.

Appendix 4
The Laplace transform solution for pd(t) during the 
postinfusion period

It is well established that:10

	 e bt b
s a b

at sinh( )( ) =
−( ) −

2 2
	 (A29)

Therefore,
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Another commonly used Laplace transform is:10

	 e bt s a
s a b

at cosh ( )( ) = −

−( ) −
2 2 	 (A31)

Therefore,
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Addition of equations (A30) and (A32) yields:
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Algebraically expanding the denominator of equation (A33):
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To make the denominator of the left-hand side of equation 
(A34) equivalent to that of equation (A21), the following 
expressions for a and b have again been used (see Appendix 3):

	 a Cl
V

b
Cl AV

V
=
−

=
−( )

2

4

20

2
0

0 5

0

,

.

	 (A35)

Reiterating, the Laplace transform of the principle equation 
is:
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Rearrangement results in:
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Collecting terms:
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Solving for PD(s):
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Expanding and multiplying both the numerator and 
denominator of equation (A39) by Cl s V⋅ / 0  yields:
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The inverse Laplace transform of equation (A40) is 
therefore:10
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As before, the dimensionless coefficient w is (see  
Appendix 3):

	 w
R

Cl AV
i=

−( )
2

42
0

0 5. 	 (A42)

Inspection of the infusion component of equation (A41) 
demonstrates that it is identical in form to that of the solution 
presented in Appendix 3. With respect to the initial condition 

component of equation (A41) and in the special case of b being 
an imaginary number, sinh( )bt  will also yield an imaginary 
number (see Appendix 3). Therefore, multiplication by ( / )a b  
will yield a numerically real result. Furthermore, cosh( )bt  will 
always yield a real number.

However, during the analysis of the data presented within 
this article, b and w are both real during the postinfusion period 
for all patients, regardless of what their values had been during 
the infusion period.




