When attempting to identify LNs, a stimulating electrical current of 0.5-2.0 mA is used by the surgeon. This current is administered via a sterile probe, which is placed directly on the anatomical site in question. Additionally, return electrodes are positioned in the skin above the sternum.

When a LN is located, an electrical signal is subsequently generated by the motion of the vocal cords. An audibly recognizable “machine gun click” is then produced from the device’s associated monitor. This sound has set frequency of 4 times/s (4 Hz). Simultaneously, an oscilloscope-like screen displays an identifiable sinusoidal response.

Depending on clinical conditions, either direct laryngoscopy, video laryngoscopy, or fiber-optic intubation can be utilized for airway management. However, tracheal intubation in many of these patients may be difficult; given their concomitant head and neck disease. Thus, the glottis may not be midline or the trachea may be compressed. The presence of head and neck tumors, or prior radiation treatment, could also produce limited neck extension. Inadequate subluxation of the mandible, obesity, or reduced thyro-mental distance may also be present. Accordingly, the anesthesiologist may wish to use fiber-optic intubation. It should be noted that the use of certain associated techniques, such as nebulized or trans-tracheal lidocaine, or superior LN blocks, may interfere with the performance of this tracheal tube with respect to the surgical localization of the LNs.

As these tracheal tubes have a minimum outer diameter of at least 8.8 mm, oral intubation is necessary. Furthermore, the conical connector, located on the proximal aspect of this tracheal tube, is non-removable. For these reasons, the use of the Patil-Syracuse fiber-optic-compatible oral airway (FCOA) may be advantageous. As shown in Figure 1, this FCOA is mechanically compatible with the NIM EMG tracheal tube. It also has an anterior channel which greatly facilitates intubations which may be difficult secondary to an anterior-oriented glottis. Moreover, this channel is relatively shallow and will allow the fiberscope to readily move off-midline in the event that the trachea is deviated. Once, the glottis is identified, and the fiberscope advanced into the trachea, the Patil-Syracuse airway is readily removed from the patient’s oropharynx before advancement of the NIM EMG tracheal tube.[3]

Furthermore, the use of non-depolarizing neuromuscular blocking agents is contraindicated when using this tracheal tube. To facilitate tracheal intubation, a depolarizing agent may be required. Pre-paralytic, as well as post-paralytic, assessment of train-of-four monitoring should be carried out. This documents the return of neuro-muscular function to that of the patient’s baseline.

References

Prior to placement, the cuff of the NIM EMG tracheal tube should be covered with an aqueous lubricant rather than a local anesthetic gel. It is also advisable to use a low FiO₂ given the associated potential for an electrical fire. Lastly, it should also be noted that this particular tracheal tube is not magnetic resonance imaging compatible.

Consideration should also be made to use a cook airway exchange catheter (CAEC) when extubating a patient with a “difficult airway” requiring a NIM EMG tracheal tube. CAECs are also mechanically compatible with these tracheal tubes and can function as a stent; facilitating re-intubation. Furthermore, they also allow for jet ventilation in the event that re-intubation cannot be readily accomplished. [4]

In conclusion, the NIM EMG tube allows for intraoperative localization of the LNs during the surgical dissection. Proper understanding of its structure and function is an essential for the anesthesiologist.

Glen Atlas, Marshall Lee
University of Medicine and Dentistry of New Jersey, Newark, NJ, USA

Address for correspondence: Dr. Glen Atlas, 29 Knollwood, Dr. Livingston, USA. E-mail: atlasgm@umdnj.edu

References


Is fiberoptic bronchoscopy a must prior to one lung ventilation in a situs inversus patient?

Sir,

Situs Inversus (SI) is a condition characterized by a mirror image orientation of the abdominal and thoracic viscera in relation to midline. Thoracoscopic surgery enables internal examination, biopsy and resection of masses within the pleura and thoracic cavity and requires one lung ventilation (OLV). [1] We report OLV of a patient, ASA grade II with SI, and right-sided breast carcinoma posted for thoracoscopic surgery. Chest X-ray Postero Anterior view showed Dextrocardia with right pleural effusion. Echocardiography revealed dextrocardia with normal cardiac function. High-resolution computed tomography of chest and contrast-enhanced computed tomography of abdomen were suggestive of a tumor of right breast with right pleural effusion and SI. The anesthetic plan was to first perform fiberoptic bronchoscopy (FOB) to confirm the anatomic aberration of tracheobronchial tree in the patient. In the operating room, monitoring was initiated in the form of pulse oximeter, noninvasive blood pressure, and 5-lead electrocardiography electrodes placed in a mirror image of normal. FOB done under sedation revealed right main bronchus with upper and lower lobe branches and left main bronchus with upper, middle, and lower lobe bronchus confirming the mirror image aberration of anatomy. FOB revealed left main bronchus in line with the trachea, with upper lobe bronchial opening close to the carina. Hence, the choice of endobronchial tube

Author Queries???
AQ1: Please check affiliation and provide department
AQ2: Please check correspondence details and E-mail ID