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Abstract -The aortic pressure flow relationship is typically described using traditional integer calculus. This paper 

uses fractional calculus to relate the velocity of aortic blood flow to aortic pressure. The basis for this research is a 

Taylor series model of the velocity of aortic blood flow with subsequent term-by-term fractional integration as well 

as fractional differentiation. Fractional calculus may be a useful mathematical tool in hemodynamic modelling.   
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1. Introduction 
Traditional hemodynamic modelling is typically based upon a second-order system utilizing the 

acceleration, velocity, and displacement of blood flow (Atlas, 2008). By convention, acceleration is 

defined as the first derivative of velocity, with respect to time, whereas displacement is its indefinite 

integral. In contradistinction, fractional calculus (FC) is based upon both non-integer differentiation as 

well as non-integer integration (Dalir and Bashour, 2010; David et al., 2011). The purpose of this paper is 

to illustrate how FC may be utilized in understanding the aortic pressure flow relationship during systole. 

To cognize this application of FC, traditional integer differentiation is first examined for a power 

function of time:  
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The n

th
 repetitive integer differentiation process can therefore be summarized as: 
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In a likewise manner, the n
th
 repetitive integer integration process can also be examined for a power 

function of time:             
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Note that a constant of integration can be utilized after the completion of the repetitive integration 

process. Thus, using either (5) or (10), repetitive differentiation or repetitive integration can be similarly 

accomplished using either positive or negative values for n respectively.  

The gamma function  ( ) can be defined as (Bonnar, 2013):  
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Note that the gamma function is not defined for values of x equal to either zero or negative integer values. 

Furthermore, when x is a positive integer, the gamma function has the following property: 

 
 ( )  (   )                                                                                                                                         (12)  

 

Additionally,  ( ) “smoothly connects” the integer values of the factorial function. It is therefore suitable 

for defining non-integer factorial values. The gamma function is illustrated in Figure 1.  
 

 
Fig. 1. The gamma function is useful in determining non-integer values of the factorial function. 

It is not defined for zero and negative integer values (Web-1).  

 

Equations (5) and (10) can then be modified to utilize the gamma function: 
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Equation (13) can be used as the definition of the differintegral (Das, 2011). Where q can have a positive 

value; either integer or non-integer.
*
 Note that q can also take on integer or non-integer negative values:

†
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The term q is referred to as the order of differintegration (Campos, 1989). Additionally, 

  ( )  
   

   |
     

. As previously stated, (0) is not defined. The gamma function is also not defined for 

negative integer values. Thus, specific fractional derivatives, or fractional integrals, may be unattainable.    

Owing to either the positive or negative value of q in (13), the differintegral can therefore be utilized 

for the fractional differentiation, or fractional integration, of power functions. Furthermore, using FC, 

differentiation and integration may possibly be represented as a continuous process rather than discrete 

processes.   

 
2. Fractional Calculus and the Taylor Series of an Exponential Function 

The Taylor series for an exponential function is:  
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Thus, for a sufficiently large N, an exponential function can be accurately approximated as a 

summation of power functions. Using the above methodology, the Taylor series for an exponential can 

therefore be term-by-term fractionally differentiated or fractionally integrated: 

 

 
(16) 

 

For mathematical purposes, t cannot equal zero and be raised to a negative power. However, t can 

take on positive near-zero values. Negative values of t can also yield complex results. To further reiterate, 

care must be used when selecting integer values of q to prevent undefined values of the gamma function 

from occurring. 

 

3. Methods: Examining the Velocity of Aortic Blood Flow 

The esophageal Doppler monitor (EDM) is frequently utilized to assess the velocity of aortic blood 

flow during systole. The EDM allows clinicians to accurately assess patients’ cardiac output and stroke 

volume during anesthesia and critical care conditions (Atlas et al., 2012). Figure 2 illustrates this 

waveform. 

This velocity, v(t), can be modelled as (Atlas, 2008): 

 

                                                 
*Imaginary and complex values of q can also be utilized. However, these will not be addressed in this introductory paper.  

 †Note that an alternative terminology could be that of fractional derivatives and fractional antiderivatives.  
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Where  represents an acceleration term and  is a dimensionless gain. The time spent in systole is 

referred to as flow time, FT. It should be noted that can be determined (Atlas, 2008): 
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Note that FTp represents the time at which peak velocity (PV) occurs. This is illustrated in Figure 2. 

Using a Taylor series, v(t) can subsequently be approximated as a time-based power function: 
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By means of the aforementioned technique, fractional derivatives and fractional integrals of v(t) can 

then be determined: 
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Figure 3 demonstrates the continuous differintegral (20) over the range:        . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. The velocity of aortic blood flow as measured by an EDM. Note that PV represents peak velocity whereas FT 

signifies the time spent in systole. The time at which PV occurs is referred to as FTp (Atlas, 2008). 
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Fig. 3. Equation (20), the velocity of aortic blood flow during systole, v(t), represented as a continuous 

differintegral. Note that fractional integration is associated with −1 < q < 0 whereas fractional differentiation is 

associated with 0 < q < 1. Furthermore,   ( )  
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4. Methods: Numerical Assessment 
Using MATHCAD (PTC Corp., Needham, MA, USA) v(t) can be calculated utilizing the numerical 

values from Table 1. Subsequently, its differintegrals of order −0.7 and 0.1 can both be determined. These 

functions are illustrated in Figure 4.   

Note that the dimension associated with v(t) is m/s whereas that of  
 (    ) 

  (    )   is m/s
(−0.7)

.
‡
 Furthermore, 

the dimension of  
 (   ) 

  (   ) is m/s
0.1

.  

 
Table 1. Numerical values used for initial computational purposes. 

 

Term Value Units Notes 

 7.25 m/s
2
 acceleration  

 3.00 dimensionless gain 

 6.154 s
-1

 exponential decay 

FT 0.36 s flow time 

FTp 0.1 s time to peak flow 

a −0.7 dimensionless order of fractional differintegration 

b 0.1 dimensionless order of fractional differintegration 

 

 
Fig. 4. Velocity as a function of time, v(t), and both its associated differintegrals of order −0.7 and 0.1 are displayed.  

 
5. Results: The Systolic Pressure Flow Relationship in the Aorta 

Using (20), a straightforward model of aortic blood pressure, P(t), as a function of the velocity of 

aortic blood flow during systole is: 
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Where r represents the radius of the aorta, and a and b are both velocity-based differintegrals of order 

−0.7 and 0.1 respectively. The term Za is “reactance-like” and would be analogous to a combination of 

elastance and resistance.  Whereas Zb would be analogous to a combination of inertia and resistance. 

Furthermore, C is a constant of integration and k converts units of Pascals to mmHg. In addition: 
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So that C also functions as an initial condition. Moreover, for the purposes of this preliminary assessment, 

a “trial and error” technique was employed to determine numerical values for a, b and Za and Zb. These 

are displayed in Table 2. Note that Za and Zb have magnitudes which are “ballpark approximate” to those 

of traditionally-derived resistance, elastance, and inertia. 

The above model can also be utilized to assess 
  

  
 during systole: 

 
  

  
      (  

 (   ) 

  (   )    
 (   ) 

  (   ))                                                                                                       (23) 

 

Both P(t) and 
  

  
 are illustrated in Figure 5. Note that a positive near-zero initial value for t, instead of 

zero, has to be used in (23) to prevent a “division by zero” singularity error from occurring. 

 

 
Table 2. Numerical values used for final computational purposes. 

 

Term Value Units Notes 

C 80 mmHg constant of integration 

k 0.0075 mmHg/Pascal unit conversion 

r 0.011 m aortic radius 

Za 3.157·10
7
 N·sa

/m
5
 “reactance-like” term 

Zb 7.015·10
6
 N·sb

/m
5
 “reactance-like” term 

 

 
Fig. 5. Using fractional calculus, P(t) is modelled using differintegrals which are based upon the velocity of aortic 

blood flow during systole. Note that 
  

  
 is also displayed. 
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6. Discussion and Conclusion 
The combination of both Taylor’s series and computer-based mathematical tools allow for relatively 

simple numerical assessment of FC in hemodynamic modelling. Future research could focus on more 

refined utilization of this mathematical technique.  

In addition, the use of Fourier series may also be readily applied to hemodynamic-based FC research. 

Specifically, each sine and cosine term can be fractionally integrated or differentiated with the inclusion 

of an appropriate “phase shift.”  

Thus, the utilization of a truncated convergent infinite series allows for relatively straightforward 

fractional integration and fractional differentiation to be performed with the aid of numerical analysis 

software. Furthermore, FC allows integration and differentiation to be thought of as a continuous 

progression rather than discrete processes.  
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